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This document gives a summary of the entire course, with keywords
highlighted, in colours indicating whether and how it might appear on
the exam.

How this document works

The document goes through each lecture in order, noting what we
covered in the lecture. In particular, it highlights the key topics of the
course, and marks for each how it may appear on the exam.

In particular, the coding works as follows:

1. If it is highlighted like this, that indicates that you are expected to
be familiar with the statement to the degree that you could use it to
show some other statement or solve an exercise, if the highlighted
statement is provided to you.

You could also be asked to provide a precise statement given a
prompt as to what it is about – so for example if you see Dirac’s
theorem in this document, an exam question might also be “What
does Dirac’s theorem about the existence of Hamiltonian paths
say?”. You are not expected to know the proof of the result.

2. If it is highlighted like this, you are expected to not only know the
statement in the same sense as in the previous point, but also to
have an idea of the proof of the theorem. So you might be asked to
fill in a key step of the proof of the statement, write a precise proof
given a prompt of what the general outline is, or write an outline of
the idea of the proof.

So if you see Dirac’s theorem in this document, an exam question
might give you the proof of the result with the step where the
maximal length path is turned into a cycle, and you are asked to
fill in that step. Or you could be asked to write a proof, given that
the drawings for the proof from the lecture notes are given to you.
Or you could be asked to draw those figures and explain the broad
idea of taking a maximal length path and showing that it can be
turned into a cycle, which must be a Hamilton cycle.

3. If it is highlighted like this, you are not expected to recall the exact
statement without a prompt, but you are expected to be able to
prove it without a reminder of the idea of the proof. So if you see
Dirac’s theorem, an exam question might look like “State and prove
Dirac’s theorem about the existence of Hamilton cycles”.
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4. If it is highlighted like this, you are expected to know the statement
of the theorem without any prompt, but not expected to know the
proof.

So if you see Dirac’s theorem in this document, an exam question
might be “State Dirac’s theorem”, but you would not be asked
about the proof.

5. If it is highlighted like this, you are expected to know the statement
of the result, and additionally to have an idea of the proof. So this
is the same as this and this together.

6. Finally, if it is highlighted like this, you are expected to know both
the theorem and its proof. If you see Dirac’s theorem, that means
you could see an exam question just ask “State and prove Dirac’s
theorem”.

For definitions, it of course makes no sense to refer to knowing a
proof, so we simply highlight definitions like this if you are expected
to know and be able to state the definitions, and like this if you are
just expected to be able to use the definition and explain the idea of it
if given it, but not to be able to state it.

L2: Eulerianity, simple graphs and subgraphs

In our first lecture of the course we started softly, giving the defini-
tions of a multigraph, a walk, a trail, a path, a circuit, and a cycle.

Then we defined what it means for a graph to be connected, and
what its connected components are.

Having made all these definitions, we defined an Eulerian trail
to be a trail using every edge exactly once, and stated and proved
Euler’s theorem on Eulerian paths, which characterizes when a graph
is Eulerian in terms of the degree of its vertices.

Then, we stated and proved the handshake lemma, which says that

2|E| = ∑
v∈V

dv.

Having done all this, we defined a simple graph2, and what a 2 Which is of course, for most of the
course, the only notion of graph we
referred to – so generally we end up just
calling these graphs.

graph morphism of simple graphs is, in terms of which we could then
define isomorphism of graphs.

Once we knew what it meant for graphs to be isomorphic, we
could define an unlabelled graph to be an isomorphism class of
graphs.3 3 We largely did not end up actually

using this concept – other than in a few
counting arguments, where we needed
to be clear that we were not considering
unlabelled but labelled graphs.

We ended the lecture by defining what a subgraph, an induced
subgraph, an edge-induced subgraph, and a spanning subgraph is.
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L3: Common graph families, trees, and Cayley’s theorem

We started the lecture with giving definitions of a couple of commonly
occuring graph families: the complete graphs, path graphs, cycle
graphs, complete bipartite graphs, and complete multipartite graphs.

Then we moved on to the main topic of the lecture: Trees. We
started by proving that any tree on n vertices has n − 1 edges. We
then stated, but did not prove,4 Cayley’s formula on the number of 4 The proof was deferred until the next

lecture, when we were able to prove it
as a corollary of a more general result.

labelled trees on n vertices.
Having done this, we proved a characterisation of trees in terms

of three properties equivalent to being a tree. Then, we defined the
notion of a spanning tree, and proved that all multigraphs have a
spanning tree, assuming the axiom of choice.5 5 In fact, the two statements – exis-

tence of spanning trees for arbitrary
graphs and the axiom of choice – are
equivalent.L4: Spectral graph theory and the matrix-tree theorem

We started by defining the adjacency matrix of a graph, then we
defined what we mean by a directed graph, and used that to define
what an incidence matrix of a graph is.

We then proved that the rank of the incidence matrix equals the
number of vertices minus the number of connected components. We
then defined our final matrix associated to a graph, the Laplacian Q
of a graph, and we showed that the Laplacian satisfies Q = DDt.

Then we did a bunch more linear algebra stuff in order to finally
arrive at the Kirchhoff matrix-tree theorem. We then used this to
give a proof of Cayley’s formula, which we had stated in the previous
lecture.

L6: Weights, distances, and minimum spanning trees

We started by defining Prim’s algorithm. Then we stated and proved
that removing an edge from a tree yields a forest of two trees. Then
we proved that Prim’s algorithm is correct.

Then, we defined Kruskal’s algorithm, and proved that it is correct.
After this, we defined the graph distance and thus the diameter of a
graph. Having done this, we could define Dijkstra’s algorithm.

L7: The max-flow min-cut and marriage theorems

We defined what a weighted directed graph is, and what a flow net-
work is. Then we defined what a flow on these networks is, and its
value.

We then defined a cut on a flow network and its capacity, and
showed that the value of any flow is upper bounded by the capac-
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ity of any cut. We then defined the residual network of a flow, and
defined an augmenting path in this network.

We stated that any augmenting path can be used to find a higher-
value flow, and used this to show the Ford-Fulkerson theorem.

Then, we defined what a matching and a bipartite graph is, and
stated and proved Hall’s marriage theorem using the max-flow-min-
cut duality we had just seen.

L8: Vertex covers, Hamilton cycles, independent sets

We continued on the themes of the previous lecture, using max-flow-
min-cut to prove König’s theorem relating vertex covers to the largest
matching on a bipartite graph.

Then, we defined Hamilton cycles, and stated and proved Dirac’s
theorem.

The penultimate topic of the lecture was independent sets and the
indepence number α(G) of a graph G. We defined the line graph of a
graph, and noted that matchings are just independent sets in the line
graph.

Then we stated and proved that the problem of determining
whether a graph has an independent set of size k is NP-Complete.
Nevertheless, we were able to prove the Caro-Wei theorem giving a
lower bound on the independence number of a graph, which was our
first example of a proof using the probabilistic method.

Finally, in a little section of only definitions and nearly no theo-
rems, we defined vertex colourings of graphs, the chromatic number
χ(G) of a graph, and the clique number of a graph.

L10: Connectivity

We started by defining what it means for a graph to be k-connected,
and defined the connectivity of a graph. We then defined what it
means for a set to separate two vertices, or two sets.

We then showed that the minimum size of a set that separates two
non-adjacent vertices equals the connectivity for any graph. Then,
we showed Menger’s theorem, stating that the minimum size of a set
separating two non-adjacent vertices is precisely the largest size of a
set of independent paths between them – a fact we proved using the
min-flow-max-cut duality yet again.

Having done this general work, we proceeded to study the struc-
ture of two-connected graphs, showing a characterisation of two-con-
nected graphs.

Then, we moved on to generalizing the notion of dividing a discon-
nected graph into its connected components into dividing a connected
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graph into its two-connected components, which we called blocks. To
do this, we also needed the notion of a cutvertex and a bridge.

The crucial lemma we needed to understand the structure of the
blocks was that every cycle intersects exactly one block in more than
one vertex. We then defined the block graph of a graph, and proved
that the block graph is a tree.

L11: Planarity

Despite the lecture primarily being about planarity, we started by
defining an edge contraction, and then stated a lemma about the
structure of three-connected graphs – there is an edge in any three-
connected graph6 that can be contracted to yield another three-con- 6 On at least four vertices.

nected graph.
Having set up our lemma, we defined what it means for a graph to

be planar, and what the planar dual of a graph is. We then used the
notion of a planar dual to prove Euler’s formula for planar graphs. As
a corollary to this, we got an upper bound on the number of edges
of a planar graph (or a triangle-free planar graph) in terms of the
number of vertices.

Then we defined the notions of a topological minor and a minor
of a graph, and stated and partially proved the forbidden minor
characterisation of planar graphs due to Kuratowski and Wagner.

L12: Vertex colourings

In this lecture, we finally made use of our earlier definitions of a
vertex colouring and the chromatic number of a graph.

We started by defining the greedy colouring algorithm, and used it
to prove that χ(G) ≤ ∆ + 1 for all graphs G.

Then we defined breadth-first search in a graph, and used this
to show that in fact χ(G) ≤ ∆ if G is not regular. Then, we showed
Brooks’ theorem using a more complicated version of this idea.

We then proved that all planar graphs are five-colourable, using an
argument with Kempe chains. Continuing our study of colourings of
planar graphs, we defined the notion of an outerplanar graph, and
proved that all outerplanar graphs are three-colourable, from which
followed the art gallery theorem.

L14: The probabilistic method and the Erdős-Rényi random graph

In this lecture, we introduced one of the major techniques of modern
combinatorics and graph theory, the probabilistic method. We started
by showing a lower bound on the minimum bisection problem.
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Then we defined the Erdős-Rényi model for a random graph, and
proved a bound on the probability of it having high independence
number using the union bound method.

As an application of Markov’s inequality, and the first-moment
method, we showed that a G(n, p) a.a.s. has diameter 2 for fixed p.
(We also defined what we mean by a property holding asymptotically
almost surely/with high probability.)

Then, as an application of the second-moment method, we showed
a result about when a G(n, p) has a triangle. We then sketched a
picture of the growth of an Erdős-Rényi graph, defined the girth of a
graph, and gave a sketch of the proof of Erdős’s result that there are
graphs of arbitrarily high girth and chromatic number.

L16: Edge-colourings and Ramsey theory

We started by defining an edge colouring of a graph, and the edge-
chromatic number of a graph. Then we stated and proved König’s
line-colouring theorem, using the idea of a Kempe change for edge-
colourings as well.

Then we defined the Ramsey number R(r, k), and proved their
existence using a recursion for the Ramsey numbers, which also gave
an upper bound on these numbers. We then proved a lower bound
on the diagonal Ramsey numbers using the probabilistic method,
with a proof due to Erdős.

L17: The Rado graph

We started the lecture by defining what the Rado graph is, namely
as the unique homogeneous countable graph containing every finite
graph as an induced subgraph.

We then defined the notion of a graph being k-saturated, and
proved that a graph is the Rado graph if and only if it is countable
and k-saturated for every k.7 7 The proof of this was divided into

several lemmas – if this appears on the
exam, it won’t be one monster question,
it’ll be a proof of one of the constituent
lemmas.

Then we finally proved the existence of the Rado graph, by show-
ing that an Erdős-Rényi graph on infinitely many vertices is almost
surely isomorphic to the Rado graph.

We then used a consequence of this proof to see that removing
any finite number of vertices or edges of the Rado graph leaves you
with a graph isomorphic to the Rado graph. As a second statement
about the fractal-ness of the Rado graph, we showed a result about
partitioning the Rado graph into induced subgraphs.

We ended the lecture by giving two explicit constructions of the
Rado graph, one of which wasn’t actually explicit at all, and one of
which was.
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L18: Extremal graphs and Szemerédi’s regularity lemma

We started by defining the extremal function of a graph, the Turán
graphs, and stating Turán’s theorem. We then gave two proofs of this
– one using the Caro-Wei theorem and Cauchy-Schwarz inequality,
and one directly proving that the Turán graphs are extremal.

Then we proved a beautiful stability result about nearly-extremal
graphs.

Then, moving on to the second topic of the lecture, we defined the
notion of the density of a pair of vertex sets, and the notion of such
a pair being ε-regular. Having defined this, we stated the Szemerédi
regularity lemma,8 and then we sketched how one can use this to 8 Obviously, this highlighting does not

(as it could in general) indicate that
you might be asked to give a precise
statement of the lemma – but a question
that gives you the statement and asks
you about the idea of it relating to
random graphs could appear.

prove the triangle removal lemma.
Finally, we stated and gave a mostly complete proof of Roth’s

theorem.
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