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Questions one through eight were all of the form “reproduce this result
from the lecture notes”, so we give no solution for those. For questions
nine and ten we give a sketch of a solution.

Question 9

The right “intermediate concept” to consider here is that of a topolog-
ical ordering of a directed acyclic graph. A topological ordering is an
ordering of the vertices of the graph such that whenever u → v is an
edge of the graph, u precedes v in the ordering.

It should be clear that our DAG will be Hamiltonian if and only
if a topological ordering of its vertices is a path in the graph. So we
can divide the problem into two parts – first we find a topological
ordering, and then we check if this ordering is in fact a path. The
latter step can clearly be done in time O(|V|).

How does one find such an ordering? There are multiple algo-
rithms for it,2 so let us give just one, which is called Kahn’s algorithm. 2 Wikipedia suggests three different

options: https://en.wikipedia.org/
wiki/Topological_sorting

First, loop through all vertices and find the set of vertices which
have no incoming edges – at least one such vertex must exist in any
DAG.3 Initialize a set of these vertices as S, and let L be an empty list. 3 Keeping our end-goal of determining

hamiltonicity in mind, we can also
enumerate the vertices with no outgoing
edges. If the graph is Hamiltonian, it
must of course have exactly one of each
– so if we find too many of either kind,
we can terminate the algorithm already
at this step.

Then, as long as S is not empty, we proceed as follows:

1. Remove a vertex v from S, and add it to L.

2. For each vertex w such that v → w is an edge, remove that edge
from the graph. If w had no other incoming edges, add w to S.

If the graph we started with had no cycles, this algorithm will
eventually terminate with no edges of the graph remaining, and L
will be a topological ordering of the graph.

It is clear that this algorithm also has time complexity linear in the
number of vertices and edges, and so we have found a linear time
algorithm for determining if a DAG is Hamiltonian.

Question 10

a) This is true. The easiest example is just the complete graph on k + 1
vertices.

In fact, the stronger statement that for every k, there is a k-regular
Hamiltonian graph on n vertices for every sufficiently large n is
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also true. One construction of an example of such a graph might
go as follows:

Pick a large n, and create a graph G by starting with a cycle on n
vertices. Then, pick k − 2 matchings on Gc, and add those edges
to G to make it Hamiltonian.4 That this is graph is Hamiltonian is 4 Why is this possible? If you picked

n large enough, Dirac’s theorem tells
you there is a Hamiltonian cycle in Gc,
so picking every second edge of this
gets you your first matching. Then,
removing the edges of this matching
from Gc doesn’t reduce the degree
of any vertex by too much (since you
picked n very large, n − 3 − k > n/2),
so there is still a Hamiltonian cycle by
Dirac’s theorem, and repeat until you
have all k matchings.

obvious, since the cycle the construction started with is a Hamilto-
nian cycle.

b) This is false. Recall that we proved in the lecture notes that

|E| ≤ 3|V| − 6

as a corollary to Euler’s formula, by using a double counting
argument counting edges incident to faces. Then, in our proof of
the five-colour theorem, we used this to prove that the minimum
degree of a planar graph can be at most five – that is, every planar
graph has a vertex whose degree is at most five. So there are no
k-regular planar graphs for k > 5.

c) This is true. Consider the graph with two vertices and k edges
between those two vertices – clearly the spanning trees of this
graph are gotten precisely by picking one of the edges.

d) This is false – but it fails only for k = 2! For k = 1, it is obviously
true – any graph which is itself a tree has only one spanning tree.
For k > 2, consider the cycle graph on k vertices: A spanning tree
of this graph is gotten by removing one of the edges of the graph to
render it acyclic.

To see that it fails for k = 2, let G be any graph with more than one
spanning tree. That it has more than one spanning tree implies
it is not a tree, so it contains a cycle, say C. Now pick a spanning
forest F of G \ C.5 For any edge e of C, we get a spanning tree of G 5 G \ C may of course be disconnected,

so we need to say spanning forest here.by taking F ∪ (C \ e) – and any cycle of course has more than two
edges, so this procedure gives us more than two spanning trees,
and so G does not have exactly two spanning trees.

e) This is false. Suppose G is any planar graph. As we saw in a
previous part of this question, G has a vertex v such that dv ≤ 5.
So if we remove the set of neighbours N(v) of v from G, this will
render it disconnected. So we have removed a set of five vertices
and thereby disconnected the graph, and thus it cannot be six-
connected.

f) Whether this is true or false depends on if you interpret “tree” to
mean “finite tree” or “any tree”. It is false for finite trees, since all
finite trees have leaves.6 However, there definitely are k-regular 6 We gave a proof of this fact in one of

the earliest lectures.
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trees for every k if you allow infinite trees – to get a two-regular
tree, just turn Z into a graph by adding an edge between i and i + 1
for every i.
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