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We introduce the probabilistic method and the Erdős-Rényi graph.
Then we discuss the idea of edge-colourings of graphs, and the most
basic notions of Ramsey theory. Finally, we discuss the Rado graph.

Random graphs and the probabilistic method

We have already seen one example of the probabilistic method, when
we proved the result of Caro-Wei about the existence of independent
sets of size at least ∑v∈V(dv + 1)−1. We are going to see several
more results from various parts of graph theory proven using the
probabilistic method.

We will, in a few of the proofs, need to use a randomly chosen
graph. The study of random graphs is in fact in itself a major research
area in graph theory.2 One particularly well-studied random graph is 2 It is also one of the main things

done by graph theory people in our
department, actually.

the perhaps simplest one, the Erdős-Rényi graph.

Definition 1. For any integer n ∈ N and any probability p ∈ [0, 1],
the Erdős-Rényi graph G(n, p) is a random graph on n vertices,3 where 3 We will normally assume its vertex set

is [n], unless otherwise stated.each of the (n
2) potential edges is present independently at random

with probability p.

There are, in a broad overview, three kinds of argument that we
tend to make when using the probabilistic method. Let us give
sketches of the three methods here, and exercises using the first two
methods.

Probabilistic method proof of existence: We wish to show that
there exists an object with some certain property, such as a graph with
high chromatic number containing no short cycles. In order to prove
this, we

1. first carefully select a way to choose a random graph. If we are
lucky, we can do this by choosing the right values of n and p in an
Erdős-Rényi graph.

2. Then we lower bound the probability that our random graph will
have the desired property – so in this case that it will have high
chromatic number and no short cycles. What we need to show is
that this probability is greater than zero.

3. We conclude that if the probability of an event is greater than zero,
there must be some particular outcome in which the event happens
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– that is, there exists such a graph.

A common trick we end up using is the so called union bound.
We want to find an upper bound for the probability of some event A
– say, the event that a random graph has a four-cycle. We divide this
event up into a bunch of not necessarily mutually exclusive events
A1, A2, . . . , An, writing A =

⋃n
i=1 Ai – for example, one event for each

four-tuple of vertices, where the event is that this tuple in particular
forms a four-cycle. Then we use the fact that

P (A) = P

(
n⋃

i=1

Ai

)
≤

n

∑
i=1

P (Ai)

and bound each of the summands instead.

Exercise 1. Prove using the union bound method that if G = G(n, p)
is an Erdős-Rényi graph, then

P (α (G) ≥ k) ≤
(

n
k

)
(1 − p)(

k
2),

where α(G) is the independence number of G.

First moment method: We wish to show that there is an object of a
certain size. For example, in Caro-Wei, we wanted to show that there
is an independent set in a graph of a certain size. In order to do this,
we

1. first choose a random independent set in a clever way. Again, we
need to choose this in such a way that the rest of the calculations
work out.

2. Then we compute the expected size of the independent set. The
crucial part in this argument is normally that the expected size of a
random subset A of a big set X can always be written as

E [|A|] = E

[
∑

x∈X
1{x∈A}

]
= ∑

x∈X
E
[
1{x∈A}

]
= ∑

x∈X
P (x ∈ A) ,

using linearity of expectation. So we can reduce to calculating the
probability that a single vertex is in the set, which is usually much
easier to do.

3. We conclude that if the expected size of the independent set is at
least what we wanted, then there must be an actual outcome of this
size, since the average cannot be greater than every single outcome.

Sometimes, what we want to show is not existence of something,
but rather that something does not exist – that is, we want to show
that the set of such things has size zero.4 We can do this as well using 4 Normally, we mean this in an asymp-

totic sense – as some underlying param-
eter such as the number of vertices goes
to infinity, the probability that the thing
exists in the graph goes to zero.

the first moment method, replacing the last step with an application
of Markov’s inequality from probability theory:
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Lemma 2 (Markov’s inequality). Suppose X is a random variable that
always takes non-negative values. Then for any a > 0,

P (X > a) ≤ E [X]

a
.

In particular, if we have a sequence of random variables Xn such that
E [Xn] → 0, then also P (Xn > 0) → 0.

Exercise 2. Recall that the diameter of a graph is the longest distance
between any two vertices in the graph. Prove that for every p ∈ (0, 1),
we have

P (diam (G(n, p)) = 2) → 1 as n → ∞.

Sometimes we want to show that something occurs basically every
time in a random graph. Unfortunately, you cannot prove this just
by showing that the expected number of times it occurs is large:
Imagine a lottery where you have a 1

n chance to win n2 gold bars.
The expected number of gold bars you win is always n, but it is
still true that the probability of winning goes to zero with n. So
the expectation alone being high does not tell you you will actually
usually win anything at all.

In this situation, we will instead have recourse to the second-
moment method.5

5 The version we give here is a slightly
limited case of the more general method
– in general, what makes a proof a
second-moment method proof is that we
compute second moments and appeal to
Chebyshev’s inequality.

The second moment method: We wish to show that something
asymptotically almost always6 occurs in a random graph, for example 6 This sounds like imprecise language,

but it actually is a mathematical term
that means “occurs with probability
converging to one”.

that it has a triangles. What we do is that we let X be the random
number of triangles, compute the expectation and variance of X, and
appeal to the following inequality7 7 Which follows from Chebyshev’s

inequality, and holds whenver the
right-hand side is well defined. (If the
expectation is infinite, the variance
is undefined, and the right hand side
becomes undefined divided by infinity.)

P (X = 0) ≤ Var (X)

E [X]2
.

Edge-colourings

In our last lecture, we looked at the notion of a vertex colouring of
a graph, and derived a few results about it. Of course, vertices are
not the only thing we could be colouring – we could also look at
colouring the edges of a graph.

Definition 3. Let G = (V, E) be a graph. A proper8 k-edge-colouring is a

8 Unlike for vertex colourings, we will
actually be interested in improper edge
colourings more often than proper ones,
so we choose the opposite convention of
including the word proper and omitting
the word improper for them.

function c : E → [k] such that no two edges which are incident to each
other (i.e. share an endpoint) are assigned the same colour. If we do
not have this restriction on incident edges, we call it just an (improper)
edge colouring.

The edge-chromatic number of G, denoted χ1(G),9 is the smallest

9 This is sometimes also called the
chromatic index of G. The 1 in the
notation indicates that edges are one-
dimensional – if we ever need to refer
to both the chromatic number and the
edge-chromatic number at the same
time, we may thus denote the chromatic
number by χ0(G), since vertices are
zero-dimensional. In some texts the
edge-chromatic number is denoted by
χ′(G), but χ and χ′ look way too similar
in LATEX and on a blackboard, so let us
avoid that notation.

Exercise 3. Given this little discussion,
can you offer a definition of what χ2(G)
might refer to for a plane graph?

integer k such that G has a proper k-edge-colouring.
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Exercise 4. We observed for vertex colourings that there are trivial
bounds for it in terms of the clique number and the independence
number, and that each colour class is an independent set.

Now, observe that a proper edge-colouring of G is just a vertex
colouring on the line graph of G. Use this observation to derive
bounds on χ1(G). What are the colour classes of a proper edge-
colouring, using a term we’ve already defined?

In our study of vertex colourings, we proved that all planar graphs
can be coloured with five colours, using a trick known as Kempe
changes.10 You can do something similar for proper edge-colourings, 10 We defined exactly what these are in

the previous exercise session.considering edge-induced components of edges with two colours and
swapping those.

Exercise 5. Use a trick like this to prove the following theorem by
König:11 11 This exercise is probably a little bit

tough, but should be doable if you give
it some time. It definitely isn’t as quick
as the other ones could be, though.

Theorem 4 (König, 1916). For every bipartite graph G with maximal
degree ∆, we have χ1(G) = ∆.

Ramsey theory

Ramsey theory, named after remarkable British mathematician Frank
P. Ramsey,12 studies the question of how large a graph has to be in 12 Seriously, read his Wikipedia page if

you get bored, he was almost a modern
day Newton in terms of being British
and inventing tons of stuff across fields.

order to always contain a given structure. The simplest case is that of
the eponymous Ramsey number. Let us give two definitions of it:

Definition 5. For any integer k, the k-th Ramsey number R(k) is the
smallest integer n such that every edge-colouring of Kn using only
two colours contains a monochromatic Kk.13 13 Clearly, we mean improper edge

colourings here, since there is no proper
2-edge-colouring of any Kn other than
K2. By “containing a monochromatic
Kk” we mean that for some colour i,
the edge-induced subgraph Kn⟨c−1(i)⟩
contains a k-clique.

Definition 6. For any integer k, the k-th Ramsey number R(k) is the
smallest integer n such that every graph on n vertices contains either a
k-clique or an independent set of size k.

Exercise 6. Prove that the above two definitions are equivalent.

Of course, it is a non-trivial fact that these Ramsey numbers in
fact even exist – a priori it could be the case that for some k, there
exist arbitrarily big graphs that contain neither a k-clique nor an
independent set of size k. We will prove that this is not the case
in the lecture, and give a lower bound on these numbers using the
probabilistic method. For now, let us just show that one Ramsey
number is finite:

Exercise 7. Prove that R(3) = 6.
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The Rado graph

In almost all of this course, we only care about finite graphs. On
the few occasions we have mentioned infinite graphs, it has been to
demonstrate that things can turn weird if we allow infinite graphs,
because infinity is strange.

In this section, we will see perhaps the strangest example of all,
the Rado graph, also known as t h e random graph, with emphasis on
t h e.

Definition 7. The Rado graph is the unique14 countably infinite homo- 14 Up to isomorphism.

geneous graph G such that, for any finite graph H, H is isomorphic to
an induced subgraph of G.15 15 In fact, the Rado graph contains every

countably infinite graph as an induced
subgraph as well, but let’s skip that in
the definition.

This definition should leave you with two large questions hovering
in your mind, and one smaller one:

1. Can such a thing even exist?!

2. Even if such a thing exists, how can it be unique?

3. Wait, what does it mean for a graph to be “homogeneous”?

We will explore some of the strangeness of this graph, but the
definition we gave of it is a bit hard to work with. So let us offer two
definitions – first, what did we mean by homogeneous?

Definition 8. Let G = (V, E) be a finite or infinite graph. We say
that G is homogeneous if, for any two subsets A, B ⊆ V such that the
induced subgraphs G[A] and G[B] are isomorphic, the isomorphism
between them can be extended to an automorphism of the entire
graph.

Concretely, this means that if f : A → B is the isomorphism
between G[A] and G[B], there is an isomorphism g : V → V between
G and itself, such that f (a) = g(a) whenever a ∈ A.

Exercise 8. Find at least two different examples of families of homoge-
neous graphs.16 16 There are two somewhat “trivial” ex-

amples that come to mind immediately
for me, among the graph families we
have already defined in the course. Plus
a funny construction of an infinite graph
with this property.

The version of the definition of the Rado graph that we can actually
work with is in terms of saturation.

Definition 9. A graph G = (V, E), finite or infinite, is k-saturated if, for
any two subsets U, W ⊆ V, each of size at most k, there exists a vertex
v ∈ V such that v ∼ u ∈ E for every u ∈ U, and v ∼ w ̸∈ E for every
w ∈ W.

Exercise 9. Consider the graph G whose vertices are the two-element
subsets of the set {1, 2, . . . , 6}, and where there is an edge between
two such subsets if their intersection is non-empty. Prove that this
graph is 2-saturated.
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Exercise 10. Prove that if G is k-saturated, then for any graph H on at
most k vertices, G contains H as an induced subgraph.17 17 Hint: Use induction in the size of H.

Having done all this, let us give the definition of the Rado graph
that we will actually be using:

Definition 10. The Rado graph is the unique countably infinite graph
which is k-saturated for every k ∈ N.

Notice how the previous exercise we did proves that the Rado
graph by this definition does contain every finite graph as an induced
subgraph. We leave the proof of the existence of the Rado graph, and
of the equivalence of the two definitions, to the actual lecture.18 18 Though proving homogeneity of the

Rado graph according to the second
definition is actually not too hard, so if
you like you can try to find a proof of
this yourself.
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