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We introduce the concept of extremal graph theory, starting with
Turan’s theorem. Then we introduce Szemerédi’s regularity lemma as a
tool for extremal graph theory.

Extremal graphs

We start with the central definition of extremal graph theory, and then
we explain what it actually means through some exercises.

Definition 1. Given any graph H, we say that a graph G is H-free if it
has no subgraph isomorphic to H. We say that it is maximal H-free if
adding any edge to it would create a subgraph isomorphic to H, and
we say that is is maximum H-free (or extremal among H-free graphs) if
additionally no other H-free graph has more edges than G.

For each integer n, we define the extremal function for H, denoted
ex(n; H), to be the number of edges of a maximum H-free graph on n
vertices.

Exercise 1. As a warm-up exercise, if H is the path on three vertices,
what is ex(n; H)? What are the extremal graphs for this problem?

Letting Hk be a star graph with k leaves,2 what is ex(n; Hk)? Which 2 That is, a tree with one root with k
children, and no other vertices or edges.are the extremal graphs here?

Having done this warmup, we can move on to the original ques-
tion that motivated the start of extremal graph theory: How many
edges can a graph have if it does not contain any triangles? This
requirement clearly imposes some bound on the number of edges – a
complete graph certainly contains a triangle – but what is the bound?

Exercise 2. Letting H = K3, the triangle graph, what is ex(n; K3)?
What do the extremal graphs look like?3 3 Side exercise: Can you find a graph

that is maximal triangle-free but not
extremal?Exercise 3. Can you generalize what you just did to finding ex(n; Kk)

for k > 3?

In the lecture, we will see several very elegant proofs of Turán’s
theorem, which is the theorem that gives the answer to this question.
Let us close out with an exercise that is definitely rather tough, but
has a very elegant solution4 which points towards more advanced 4 Which uses a probabilistic method

style of argument.problems.
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Exercise 4. Let us generalize the definition of ex(n; H) to saying that
for every graph G,

ex(G; H) = max {|E(F)| | H ̸⊆ F ⊆ G} ,

that is, ex(G; H) is the largest number of edges of an H-free subgraph
of G. So ex(n; H) = ex(Kn; H).

Prove that for all H and all n-vertex graphs G,

ex(G; H) ≥ ex(n; H)
|E(G)|
(n

2)
.

The Szemerédi regularity lemma

Let G be a very large graph with lots of vertices and edges. Is there a
way to summarize roughly what this graph looks like? At first glance,
the question seems absurd: If we are considering any graph, surely it
can look like anything, and so we can’t compress the information any
further?

The regularity lemma5 gives us a way of doing this, including 5 Which is what we will call it through-
out, omitting Szemerédi’s name in the
interest of not having to pronounce too
many Hungarian names.

error bounds on how wrong our summary is.
Before we give the statement of the regularity lemma with all its

quantifiers, let us introduce the following random graph model:

Definition 2. Take a weighted graph R = ([k], E, w) with weights
in the interval (0, 1], which we call a blueprint. Then, for any n the
random multipartite graph with blueprint R, denoted G(n, R), is a k-
partite graph whose parts A1, A2, . . . , Ak all have n vertices, and
where an edge between a ∈ Ai and b ∈ Aj is present with probability
w(i ∼ j).

Exercise 5. Convince yourself that if you take R to be the complete
graph on n vertices with all edge weights equal to p, then the graph
G(1, R) is just an Erdős-Rényi graph G(n, p).

What the regularity lemma says is essentially that every large
enough graph looks mostly like a random multipartite graph for some
blueprint, if you squint a bit at it and ignore a few edges. So this
blueprint is the summary of the graph which we were looking for.

To see the sense in which this is true, we need first to introduce two
more concepts.

Definition 3. Let G = (V, E) be some graph on n vertices. The density
of G is

d(G) =
|E|
(n

2)
.

For any two disjoint sets of vertices X and Y, let E(X, Y) denote the
set of edges with one endpoint in X and one in Y, and let e(X, Y) =
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|E(X, Y)|. Then the density of the pair (X, Y) is

d(X, Y) =
e(X, Y)
|X||Y| .

Exercise 6. Prove that in G(n, R), the random multipartite graph with
blueprint R, if X = Ai and Y = Aj are two parts of the partition of the
graph, the density d(X, Y) converges to w(i ∼ j) in probability and
almost surely.6 6 If you don’t recall this from probability

theory, what you want to use to prove
this is the weak and the strong laws of
large numbers, respectively.

So as the result of the previous exercise indicates, the density of a
pair of vertex sets is sort of the probability of an edge between them
– except it is a deterministic thing, so it makes sense to talk about for
arbitrary graphs.

In fact, our random bipartite graph will have a much stronger
property than just having the “right” densities between parts – even
if you zoom in on just a subset of the parts, they will still have the
right density, as long as they aren’t too tiny. No particular subset of a
part is “special”. The way to make this formal is through the notion
of ε-regularity.

Definition 4. Let G = (V, E) be a graph on n vertices, and A and B
two disjoint subsets of V. For any ε > 0, we say that the pair (A, B)
is ε-regular if it holds for all X ⊆ A, Y ⊆ B with |X| ≥ ε|A| and
|Y| ≥ ε|B| that

|d(X, Y)− d(A, B)| ≤ ε.

Exercise 7. Can you find a graph G with a pair of vertex sets that fails
to be 1

4 -regular?

Exercise 8. Convince yourself that it is plausible that for every
blueprint R and every ε > 0, it holds with high probability that every
pair of parts of a random multipartite graph G(n, R) is ε-regular.7 7 The order of quantifiers matters here,

so spend a moment to think about it.
We first pick an ε, and then we claim
that the probability that every pair of
parts is ε-regular tends to one as n goes
to infinity.

If you feel like it, you could even try to prove this, though that
would be more of an exercise in probability than in graph theory.8

8 To show this it actually suffices to
show the version of the statement with
the weaker quantifier ordering: that for
every ϵ and every pair of parts, that pair
is ϵ-regular with high probability, since
there are only a fixed and finite number
of pairs of parts.

So the concept of ε-regularity captures a sense in which the edges
between two sets of vertices can look like they were chosen at random,
which is made plausible by the fact that an actually random graph
will have its pairs be ε-regular.

Now, we can finally state the Szemerédi regularity lemma, and it
will hopefully make sense why we say it morally means all graphs
look roughly like random multipartite graphs.

Theorem 5 (Szemerédi’s regularity lemma). For every ε > 0 and m ∈ N

there exists an M ∈ N such that for every graph G = (V, E) on at least M
vertices and every δ ∈ [0, 1], there exists

a) a blueprint R = ([k], ER, w) whose minimum weight is at least δ,
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b) a partition V = V0 ⨿ V1 ⨿ . . . ⨿ Vk,

c) and a spanning subgraph G′ of G,

such that

1. m ≤ k ≤ M,

2. 0 ≤ |V0| ≤ ε|V|,9 9 So notice in particular that V0 may be
empty.

3. |V1| = |V2| = . . . = |Vk|,

4. for every v ∈ V
dG′(v) > dG(v)− (δ + ϵ)|V|,

where dG′ and dG denote degrees in G′ and G respectively,

5. the graph G′′ = G′[V \ V0] is multipartite with the sets Vi as parts,10 10 Which concretely just means that for
every i = 1, 2, . . . , k, there are no edges
internal to Vi in G′, which you could
alternatively phrase as that these sets
are independent in G′.

6. and all of the pairs (Vi, Vj) for 1 ≤ i, j ≤ k are ε-regular, and their density
is w(i ∼ j) if i ∼ j is an edge of R, and otherwise there are no edges
between them.

Exercise 9. That theorem was quite the mouthful. Take a moment to
convince yourself that it really is saying that there exists a subgraph
G′′ = G′[V \ V0] that looks like it was sampled from G(m, R) for the
given blueprint R and an m that is approximately n

k .
It is obvious that we have lost at most ε|V| vertices of G by passing

to G′′. How many edges can we have lost?

In the lecture, we will see how we can use this machinery we
have set up to prove Roth’s theorem on the existence of arithmetic
progressions of length three, and also mention that it can also be
used to prove the Erdős-Stone-Simonovits theorem, which is a vast
generalization of what we did with the Kk-free graphs.


	Extremal graphs
	The Szemerédi regularity lemma

