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In the previous lecture, we learned how to count the number of span-
ning trees of a graph. Now, we study how to find spanning trees, and
minimal spanning trees. We also think about the vertex version of
Eulerian circuits, which are called Hamilton paths. Finally, we consider
flows in graphs.

Weighted graphs and minimum spanning trees

We saw in our final theorem of the previous lecture that there is an
effective way of computing how many spanning trees there are. Is
there also a good way of finding one? The answer to this is yes – and
in fact we can do something much stronger in an efficient way.

To explain the problem we are concerned with, let us introduce the
notion of a weighted graph. We will consider simple weighted graphs,
but the same notion makes perfect sense also for multigraphs and
directed graphs.

Definition 1. A weighted graph is a simple graph G = (V, E) together
with a weight function w : E → R. If H = (V′, E′) is a subgraph of
G, its weight is defined as w(H) = ∑e∈E′ w(e), whenever this is well
defined.2 A minimum spanning tree (MST) is a spanning tree T of G

2 If it contains infinitely many positive
and infinitely many negative weights,
the sum might not converge, but this
case is entirely pathological and won’t
occur for us.such that w(T) is minimal among all spanning trees.

It is clear that for finite weighted graphs, there always exists at least
one minimum spanning tree, but they are not necessarily unique – if
all edges have the same weight, then of course every spanning tree is
minimal. However, if all edges are given different weights, then the
minimum spanning tree is indeed unique.

Exercise 1. The things we do here don’t work at all for infinite graphs.
To demonstrate this, find an infinite weighted graph without a mini-
mum spanning tree. Can you find one with only positive weights?

Exercise 2. Prove that if all edges have different weights, then the
minimum spanning tree is unique.

So we have seen that for finite directed graphs, there does exist a
unique minimal spanning tree. How do we find it?

Exercise 3. Come up with a reasonable3 method for finding a mini- 3 “Reasonable” here meaning some-
thing like at least not brute force, or in
polynomial time. The two algorithms
we’ll look at in the next lecture, and
which I’m fishing for with this exer-
cise, run in time O (|E|+ |V| log (|V|))
and |E| log (|V|) respectively, if imple-
mented optimally.

mum spanning tree. It might be useful here to consider the result we
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proved two lectures ago, giving four equivalent statements, where
one of them was “T is a tree”.

One approach might be to build it up by starting at one vertex and
then adding in neighbours, and one might be to build it up one edge
at a time, making sure never to create a cycle.

This exercise is likely one of the harder ones on this sheet, so if you
get stuck, move on to the later ones.

If all the weights on our graph are positive, we can interpret the
weights on our graph as being distances between vertices, or time
it takes to travel between them.4 Then it makes sense to make the 4 If we have negative weights, this of

course makes no sense: We can’t have
negative distances. It would also make
a lot of what we are about to do just not
work, as we will see in an exercise.

following definition:

Definition 2. For a weighted graph G with positive edge-weights, we
define the graph distance between two vertices v, v′ ∈ G by

dG(v, v′) = min
walks P from v to v′

∑
e∈E(P)

w(e).

Exercise 4. There’s a reason we require positive edge-weights. What
could happen if we allowed negative weights? Find an example of
a weighted graph with some negative weights where the distance
function isn’t well-defined.

It turns out that this notion of graph distance does indeed turn a
graph into a metric space, for those of you who know what that is.

Exercise 5. Convince yourselves that the following three properties of
dG hold:

1. For all v, v′ ∈ V, we have dG(v, v′) ≥ 0, and dG(v, v′) = 0 if and
only if v = v′.

2. We have dG(v, v′) = dG(v′, v) for all v, v′ ∈ V.

3. The triangle inequality holds, that is, for all v, u, w ∈ V,

dG(v, w) ≤ dG(v, u) + dG(u, w).

Exercise 6. Can you come up with an algorithm to compute the
distance between two vertices?

If you’re feeling ambitious, it is actually possible to efficiently find
the distances between a fixed vertex v0 and every other vertex in the
graph – how might you do this?

Flows

One situation we might want to model using a graph is the flow of
traffic in a road network, or of water in a set of pipes. So we imagine
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we have a bunch of locations, each of which is a vertex, and a col-
lection of edges denoting roads from one location to another, with
weights noting how much traffic the road can handle per hour.

To simplify things slightly, we assume all roads are one-directional,
and that all vehicles enter the graph through a single source vertex in
the graph and travel to a sink vertex where they leave the graph.

Exercise 7. Can you turn this intuitive description into a formal
mathematical definition of a problem to study?

Figure 1: A hypothetical graph mod-
elling public transport flow from
Uppsala to Södertälje.

Exercise 8. It should be clear from the intuitive description that we
can’t have an arbitrary amount of traffic flowing through our graph
– there will always be some upper limit to the traffic, and this will be
determined by the worst bottleneck for traffic.

For example, looking at Figure 1, it should be obvious that increas-
ing capacity on the Uppsala-Knivsta connection won’t improve the
flow to Södertälje at all, as long as the Stockholm-Södertälje connec-
tion has lower capacity. The only place we can really hope to improve
flow as this graph currently looks is by increasing the capacity of
either the Enköping-Bålsta or the Knivsta-Märsta connections.

Can you find a rigorous mathematical notion that corresponds to
this intuition?

If you find this interesting or are feeling ambitious, you could even
try to figure out an algorithm to determine the maximal flow through
the graph. We will give one during the lecture on this.

Hamilton cycles, independent sets, and matchings

We defined in our first exercise session that a cycle in a graph is a
walk that starts and ends at the same vertex, but other than that never
reuses a vertex. Then we did not use this concept, and instead stud-
ied walks that never reuse edges, arriving at the notion of Eulerian
circuit.
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Now, we will pursue the cycles instead, and define that a Hamilton
cycle is a cycle that uses every vertex of a graph. We say that a graph
is Hamiltonian if it has a Hamilton cycle.

Exercise 9. For Eulerian circuits there was a rather easy to find
method of determining if a graph contains one, and if so of find-
ing one. Is there a similarly easy method to see whether a graph is
Hamiltonian?5 5 The answer is that there is not – so the

point of the exercise is to just see that
the naïve approaches fail.

Or at least, there is no such method
assuming P ̸= NP – so if you find
one, write it down quick and get that
million-dollar Millenium prize.

If you are of a more computer-sciencey bent, it may interest you to
look up how one proves that determining if a graph is Hamiltonian is
NP-complete. It is a fairly neat proof, but not quite simple enough to
just give as an exercise.

Another structure that is interesting to study, and where the com-
putational hardness is actually easy to see, is independent sets.

Definition 3. An independent set in a graph G = (V, E) is a subset I of
the vertices such that no two elements of I are adjacent.

It turns out that determining if a general graph has an independent
set of size k is NP-hard.6 To show this, let us reduce 3-SAT to the 6 However, if you restrict to smaller

classes of graphs, this may no longer
be true – and there are many results
of the form “if a graph has properties
so-and-so, it has an independent set of
at least size something”, some of which
we might see later in the course.

independent set problem.

Definition 4. A 3-SAT formula is a formula that looks like

(x1 ∨ x2 ∨ ¬x3) ∧ (x2 ∨ x3 ∨ ¬x4) ∧ (x1 ∨ ¬x2 ∨ x4) .

That is, it consists of a conjunction of some number of clauses, each
of which is a disjunction of three (possibly negated) variables. A
satisfying assignment is a way to assign the values true or false to each
of the variables, so that the entire formula becomes true.7 7 This is of course not a real definition –

but it is hopefully clearer about what it
actually is than the pile of notation that
a real definition would be.

Exercise 10. We can construct a graph from a 3-SAT formula as
follows: For each clause, draw a triangle, labelling each vertex of
the triangle with one of the variables in the disjunction, including
whether it was negated or not. Then draw an edge between any two
vertices labelled xi and ¬xi for every i.

Do this for the 3-SAT formula we gave in our “definition”. Show
that there is a satistfying assignment for the 3-SAT formula if and only
if there is an independent set of size k in the corresponding graph.
This will show that the independent set problem is NP-Hard.

One final structure we are going to study in a graph is a so-called
matching.

Definition 5. A matching in a graph G = (V, E) is a set of edges
M ⊆ E such that no two edges in M share an endpoint. If {v, w} ∈ M
we say that v and w have been matched to each other.
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It turns out that this concept is actually closely related to that of
independent sets, if you squint at it in the right way.

Definition 6. Given a graph G = (V, E), the line graph L(G) of G has
as its vertices the edges of G, and there is an edge between e and e′

whenever they share an endpoint in G.

Exercise 11. Convince yourselves that a matching in G and an inde-
pendent set in L(G) are precisely the same thing.
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