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We consider the notion of k-connectivity, which is a more robust version
of the normal notion of connectedness. Then, we investigate how one
may draw a graph on paper, and learn about planarity. Finally, we
think about colourings of graphs, both the vertices and the edges.

Connectivity

Imagine you are tasked with designing the Swedish electricity net-
work. One of your interns comes to you with a terrible proposal
which isn’t even connected. You yell at them a bit, and they add a
single edge to make it connected.

You yell at them again, telling them it needs to be more connected
than that. What if a Russian operative or an explosive moose destroys
that single edge? Exasperated, your intern asks you what you mean
by “more connected” than just being connected.

Exercise 1. What do you mean?2

2 There are many possible things you
could mean by this, and there are many
many papers about different versions.
Try to think about what you are trying
to defend against.

Are you worried about trees falling
in storms and severing the electricity
mains, or are you worried about Rus-
sians sneaking in and attempting to
sabotage our infrastructure? Do these
threats give you different notions of
connectivity to strive for?

After much debating on this issue, considering storms and explo-
sive meese and Russians, you get a call from Regeringskansliet. This
is 2023: Russia is the only relevant threat, worrying about storms
and climate change is for the future. You have intel that the Russian
approach will be to blow up substations, not the wires themselves,3

3 That is, they’re destroying vertices, not
edges.

and your goal is to maximize the number of substations they have to
blow up in order to disconnect the entire network.

After some work, your team has come up with three candidate
definitions of the connectivity κ(G) of a graph:

1. A graph G is k-connected if it has more than k vertices, and for
any set of less than k vertices, removing those vertices does not
disconnect G. The connectivity κ(G) is the greatest k for which G is
k-connected.

2. For any two vertices v, w ∈ G, we say that a set X separates v from
w if v, w ̸∈ X and every path from v to w contains at least one
vertex from X. Let the minimum size of a set that separates v from
w be denoted κ(v, w), and then define the connectivity of G to be

κ(G) = min
v,w∈V
v∼w ̸∈E

κ(v, w).
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3. For any two vertices v, w ∈ G, define κ(v, w) to be the maximum
size of a set of disjoint paths from v to w.4 Define the connectivity of 4 That is, a set W of paths from v to w,

such that for any two paths P, P′ ∈ W,
V(P) ∩ V(P′) = {v, w}.

G to be
κ(G) = min

v,w∈V
v∼w ̸∈E

κ(v, w).

Exercise 2. Prove that these definitions are in fact all equivalent.5 5 The trickiest part of this is to show that
the two different definitions of κ(v, w)
are equivalent. There is a clever quick
proof of this using another flow graph
construction (and perhaps a clever
construction using duality for linear
programming, of which max-flow min-
cut is a special case), but it can also be
done with a more hands-on approach.
Make an attempt at it, but if you get
stuck completely, move on to the other
exercises.

After doing all this work, you get another call from Regeringskansliet.
It turns out that the Russians have spent all their military resources on
their invasion of Ukraine, so there’s only one special ops team left to
assault the Swedish electricity network. Thus, you only need to make
sure the network is 2-connected in order to thwart Putin.

Exercise 3. What can you say about the structure of a 2-connected
graph?6

6 This exercise is intentionally very
vague. We will be proving some
structure theorems about 2- and 3-
connected graphs in the next lecture, so
this exercise is intended for you to get
a feel for what they look like. Work on
it until you run out of ideas, and then
move on. Or look in last year’s lecture
notes for the theorem statements and try
to prove them for yourselves, without
looking at the proofs from last year.

Planarity

Consider the map of England and Wales given in Figure 1.

Figure 1: A map of England, divided
into various areas of land. For the
purposes of this exercise, ignore the
existence of Anglesey, Isle of Man, Isle
of Wight, and all other smaller islands,
and pretend like the four-way meeting
of Northampton, Westminster, Arundel
& Brighton, and Portsmouth doesn’t
exist – let us say that Northampton and
Arundel & Brighton have a stretch of
border, instead.
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There are two ways to turn this map into a graph. One way is to
consider the vertices to be wherever three areas meet (considering the
ocean/Scotland to be one area), and the edges to be the border lines
between the areas. The other way is to consider the vertices to be
the little cross icons (including an imaginary one in the ocean, or in
Scotland), and draw an edge between two of them if their areas share
a border.

Exercise 4. Draw both of these graphs.7 7 Or, if you quite reasonably don’t want
to do this much drawing, pretend like
a terrible flood has drowned all of the
South, Midlands, and Wales, and just
draw the two graphs for the northern
parts of the map.

Exercise 5. We could of course have done this for any map. The
crucial property of the graph we got by taking borders as edges is
that no edges ever cross in our drawing of the graph. An embedding
of a graph with this property is called planar, and a graph which can
be embedded in such a way is also called planar. A graph with a
particular embedding fixed is called a plane graph.

Given any planar embedding of a graph, we can in fact derive
another graph like the one we got by having the crosses be vertices
and drawing edges between adjacent regions. Can you give a math-
ematical definition of this planar dual of an embedding of a planar
graph?8 8 Consider in particular the fact that a

planar embedding of a graph can have
things happen that cannot happen if we
got it from a map. In particular, what
happens if the graph we are embedding
has vertices of degree one or two? The
map will, as you can convince yourself,
always have minimum degree three.

Another thing that can happen in
general, but does not in the example
we gave, is the situation at the France-
Spain-Andorra borders.

Exercise 6. What happens if you repeat the process of taking the
planar dual, taking the dual of the dual?

Exercise 7. Given a planar graph, there can be more than one way
of embedding it in the plane to get a plane graph. Do these different
ways always give rise to the same planar dual?

Finally, notice how we can in fact consider the plane graph G and
its planar dual G∗ to have the same edge set, by identifying an edge
in G with the edge in G∗ which crosses it. So the following statement
actually makes sense:

Lemma 1. Suppose G = (V, E) is some plane graph, and G∗ = (F, E) its
planar dual. For any set of edges S, (V, S) is a spanning tree if and only if
(F, E \ S) is a spanning tree of G∗.

Exercise 8. Prove this.9 9 If you’re feeling ambitious, you could
also show that, if we attach weights
to the edges, the minimum spanning
tree of G corresponds to a maximum
spanning tree of G∗. If you’re feeling
less ambitious, skip this exercise – we
will give a proof in the lecture on this
stuff.

Vertex colourings

We already gave a definition of a vertex colouring in our last lecture,
but let us restate it here as well:

Definition 2. A k-colouring of a graph G = (V, E) is a function
c : V → [k], where we think of the numbers 1, 2, . . . , k as colours,
such that no two adjacent vertices are sent to the same colour.10 The 10 On rare occasions, we will want to

think about colourings that do not
necessarily fulfill this condition. Then
we will call those colourings improper,
and the ones with the property will be
proper colourings.
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chromatic number of a graph G, denoted χ(G), is the least integer k
such that G has a k-colouring.

Let us also give an exercise here that we gave in the lecture where
we stated this definition:

Exercise 9. For a graph G = (V, E), let ∆ = maxv∈V dv be the
maximum degree of G. Show that11 11 How would you colour a graph with a

greedy algorithm?

χ(G) ≤ ∆ + 1.

Next, let us look at a definition:

Definition 3. Let G = (V, E) be some graph with a k-colouring
c : V → [k]. Let a, b ∈ [k] and let G(a, b) = G[c−1({a, b})] be the
induced subgraph of just vertices coloured a or b. An (a, b)-component,
also known as a Kempe chain, of G is a connected component of G(a, b).
The operation of swapping the two colours in a Kempe chain is
called a Kempe change.

Exercise 10. Convince yourselves that what you get after a Kempe
change is still a valid k-colouring.

Let us finish off with a few exercises that aren’t about the exact
theorems we will be proving in the lecture, but are still useful for
learning to think about colourings.

First, a fairly easy one, once you see the argument:

Exercise 11. Show that, for any graph G = (V, E), it holds that

|E| ≥
(

χ(G)

2

)
.

Then, a slightly trickier one:

Exercise 12. Let G be the infinite graph whose vertices are the points
of R2, and where there is an edge x ∼ y whenever ∥x − y∥ = 1. What
bounds can you find for the chromatic number of G?12

12 It should be possible for you to find
both a lower bound and an upper
bound – the best you can reasonably
find limits it to a range of four integers.
Up until 2018, these were the best
known bounds – then the range was
shrunk to just three integers. The exact
value is still unknown.

Finally, one of somewhat unknown difficulty:13

13 I stole it from an exercise sheet for
a graph theory course at Oxford. It
looks fun, but I haven’t actually solved
it myself.

Exercise 13. Find two graphs G1 = (V1, E1), G2 = (V2, E2), such
that V1 ∩ V2 = {u, v}, u ∼ v ̸∈ E1 ∪ E2, and χ(G1 ∪ G2) >

max(χ(G1), χ(G2)), where by G1 ∪ G2 we mean the graph (V1 ∪
V2, E1 ∪ E2). How big can the difference be?
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