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We study the notion of the connectivity of a graph, which quantifies how
connected a graph is. Then we prove some structure theorems about 2-
and 3-connected graphs.

Definitions

We already began our study of connectivity in the exercise session,
but let us restate the central definitions again.

Definition 1. A simple graph G = (V, E) is called k-connected if
|V| > k and G[V \ X] is connected for every X ⊆ V with |X| < k. The
connectivity of G is the largest k for which G is k-connected, denoted
κ(G).2 2 For infinite graphs this might, of

course, not be well defined, since there
might be no largest such k.

Exercise 1. Give an example of a graph
which is k-connected for every k.

Figure 1: A graph of connectivity two.
Removing any single vertex does not
disconnect the graph, but there are
obviously ways to remove two vertices
to disconnect it.

Example 2. Every graph is zero-connected,3 and every connected 3 Unless you consider the “empty graph”
(∅, ∅) to be a graph.graph on at least two vertices is one-connected. Kn is n − 1-connected,

as is a complete graph with one edge removed, and Ka,b is min(a, b)-
connected. The graphs of connectivity zero are precisely the discon-
nected graphs and K1.

Definition 3. Let G = (V, E) be a graph, and let v, w ∈ V be two
vertices and A, B ⊆ V two sets of vertices.

A set X ⊆ V separates v from w if X ̸∋ v, w and every path from v to
w contains at least one vertex from X. We denote the minimum size
of a set separating v from w by κ(v, w).

A set X ⊆ V separates A from B if every path from a vertex in A to
a vertex in B contains at least one vertex of X. Notice that here we do
not require A, B, and X to be disjoint – and in fact if A ∩ B ̸= ∅ we
must have this intersection contained in X, or the lazy path starting
and ending at the same vertex in A ∩ B would prevent separation.

mailto:vilhelm.agdur@math.uu.se


lecture 10: connectivity · 1ma170 2

Lemma 4. For a graph G = (V, E) that is not a complete graph, we have

κ(G) = min
u,v∈V
u∼v ̸∈E

κ(u, v).

Proof. Since G is not complete, κ(G) equals the minimum size of a set
X ⊆ V whose removal disconnects the graph.4 Let X be a minimal 4 Since it is not complete, there exists a

pair of vertices without an edge between
them. Removing all vertices but these
two definitely disconnects the graph.

such set, and so since G[V \ X] is disconnected we can find x0 and
y0 from different components, which are thus separated by X. So
minx,y∈V κ(x, y) ≤ |X| = κ(G).

Conversely, let x0 and y0 be two non-adjacent vertices such that
κ(x0, y0) attains this minimum. Then there exists a separating set
X for x0 and y0 of size κ(x0, y0) = minx,y∈V:x∼y ̸∈E κ(x, y). So in
particular a set of this size suffices to disconnect G, and hence κ(G) ≤
minx,y∈V:x∼y ̸∈E κ(x, y).

Menger’s theorem

We are now ready to show Menger’s theorem, the content of which is
that we could also have defined connectivity in terms of independent
paths.

Theorem 5 (Menger). Let G be a graph, and let u and v be two non-
adjacent vertices of G. Then κ(u, v), the minimum size of a set that sepa-
rates u and v, equals the maximum size of a set of independent paths from
v to w, where we say that two paths are independent if they share only their
start and end point.

Proof. We will again use a clever flow network construction to prove
this with the max-flow min-cut theorem.5 The way we construct our 5 So when I said in an earlier lecture that

we were done applying this technique, I
was obviously wrong.

flow network is to first replace every edge x ∼ y by two edges x → y
and y → x. Then, for every vertex x, except u and v, we split it into
two vertices xi and xo, and replace every edge incoming to x with one
to xi, and likewise every edge going out of x with one going out of xo.
Finally, we add an edge from xi to xo.

We declare all edges to have infinite capacity, except for the ones
from xi to xo, which have capacity 1.

It is clear that an integer flow in this graph corresponds precisely
to a set of independent paths from u to v, since our construction with
an edge of capacity one for each vertex means each vertex can only
be used zero or one times. So a maximum flow corresponds to a
maximum set of independent paths.

Likewise, it is easy to see that a cut must, to have finite capac-
ity, cut only through the edges of weight one, which correspond to
vertices in the original graph, and their capacity is precisely the num-
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Figure 2: The result of applying our
flow network construction to the graph
in Figure 1. Red edges have capacity
one, grey edges have infinite capacity.

ber of such vertices it cuts. So the capacity of a minimum cut is the
minimum size of a set of vertices separating u from v.

So, by the max-flow min-cut theorem, the maximum number of
independent paths equals the minimum size of a separating set.

At first glance, the following corollary looks like it should be
entirely trivial, but it actually requires a little bit of work.

Theorem 6 (Menger, global version). A graph is k-connected if and only
if it contains k independent paths between any two vertices.

Proof. Let G = (V, E) be a graph. If G has k or fewer vertices, it is
by definition not k-connected, and it is clearly impossible for there
to be k independent paths at all, since there are just too few vertices.
Similarly, if G is complete on more than k vertices, we see easily that
it is both k-connected and has the requisite number of independent
paths. So we lose no generality in assuming G is a non-complete
graph on more than k vertices.

If G is k-connected, then κ(G) ≥ k and hence κ(u, v) ≥ k for any
two non-adjacent vertices u and v by Lemma 4. By Menger’s theorem,
u and v are thus connected by at least k independent paths.

What remains to be shown is that we also have enough indepen-
dent paths in the case where u and v are adjacent. So assume for
contradiction that there are at most k − 1 independent paths from u
to v. After removing the edge u ∼ v from G to get a graph G′, we are
left with at most k − 2 independent paths from u to v in G′.

Hence, by Menger’s theorem, we can separate u from v by a set
X of size at most k − 2 in G′. Since G has more than k vertices, there
must be a vertex w ∈ V \ (X ∪ {v, w}). Then this w is separated by
X in G′ from either u or v, say u. This however implies that X ∪ {v}
separates w from u, and |X ∪ {v}| ≤ k − 1. This however contradicts
the assumption that G is k-connected.

In the other direction, assume there exist at least k independent
paths between any two vertices. Then this holds in particular for any



lecture 10: connectivity · 1ma170 4

pair of non-adjacent vertices, and by assumption there is such a pair.
So by Menger’s theorem we have κ(x, y) ≥ k for all such pairs, and
thus κ(G) ≥ k by Lemma 4.

We could also have modified our proof of the “local” version of
Menger’s theorem to instead get this theorem:

Theorem 7 (Menger). Let G = (V, E) be a graph, and let A, B ⊆ V be
sets of vertices. Then the minimum size of a set X that separates A from B
is equal to the maximum number of disjoint paths with one end in A and the
other end in B.

Exercise 2. Modify the proof of Theorem 5 into a proof of Theorem 7.

The structure of two-connected graphs

Determining what the one-connected graphs are is easy: They’re the
connected graphs. Can we give a similarly easy classification of the
two-connected graphs? It turns out the answer is yes.

Theorem 8. A finite6 graph is two-connected if and only if it can be con- 6 Do you actually need this assumption?
If you enjoyed thinking about transfinite
induction when we proved that Zorn’s
lemma implies all graphs have spanning
trees, you may enjoy trying to formalize
a version of this without the finiteness
assumption.

structed from a cycle graph by successively adding paths to it, both of whose
endpoints lie in the graph already constructed.

Proof. Every graph constructed in this way will be two-connected,7

7

Exercise 3. Prove this. (Hint: Induction
on the number of paths added.)

so what we need to show is that every two-connected graph can be
constructed like this.

Let us call a graph that can be constructed like this constructible,
and let G be a two-connected graph. Clearly, G must contain a cycle,
since otherwise it’d be a tree or a forest, neither of which is two-
connected. Thus, the set of constructible subgraphs of G is non-
empty, and it must in particular have a maximal (under the subgraph
relation) element H.

This H must in fact be induced: If x and y were vertices of H and
x ∼ y an edge of G but not of H, then this edge would be a path
with both its endpoints in H, so we could add it to H to get a larger
constructible subgraph, which is a contradiction.

So it remains to see that H is spanning. So suppose it is not, and
there exists some vertex in G but not in H. Since G is connected,
there must in particular be such a vertex that is adjacent to H. Call it
y, and let its neighbour in H be x.

Now, since G is two-connected, removing the vertex x does not
disconnect it. Therefore, there still must exist a path P connecting y
to some vertex in H. Then, however, this path P together with the
edge y ∼ x is a path with both endpoints in H, and so could be added
to H to get a larger constructible subgraph, a contradiction. So H is
spanning and induced, and thus G = H.
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We know very well that we can divide a connected graph into
its connected components. One way of phrasing this is that we can
divide a zero-connected graph into parts that are one-connected.
Can we also divide a one-connected graph into parts which are two-
connected?

The answer to this question turns out to essentially be yes.8

8 The same question for dividing a two-
connected graph into three-connected
components also turns out to have
an affirmative answer, involving the
amusingly named Tutte’s angry theorem.
Unfortunately the pattern then breaks
down, and you need special properties
of the graph to be able to meaningfully
talk about it having four-connected
components and so on.

Definition 9. Let G be a graph. A cutvertex is a vertex whose removal
increases the number of connected components of G. A bridge is an
edge whose removal increases the number of connected components
of G. A block is a maximal connected subgraph H without a cutvertex
in H,9 where we by maximal mean maximal with respect to the 9 By which we mean that H considered

as a graph on its own has no cutvertices,
not that no vertex of H is a cutvertex of
G.

subgraph relation.

Now, a block is not exactly the same thing as a two-connected
subgraph, but it is very close to being that, as we shall see. It is clear
that a two-connected graph has no cutvertices, so any two-connected
subgraph is contained in a block – and as we will see, it is contained
in exactly one block.

To be able to prove this, we need the following innocuous-looking
but in fact rather deep lemma:

Lemma 10. For any cycle C in G, there is exactly one block intersecting it
in more than one vertex.

Proof. Suppose C is a cycle in G, and suppose for contradiction that
A and B are two blocks both intersecting C in multiple vertices. We
claim that it is then the case that C ∪ A ∪ B is a connected graph with
no cutvertices, contradicting the maximality of A and B.

So suppose we remove a vertex v from C ∪ A ∪ B. If v ∈ C, this
clearly does not disconnect the graph. If v ∈ A, this does not discon-
nect A itself, because A had no cutvertices, and it cannot disconnect
A from the rest of C ∪ A ∪ B since A intersected C in multiple vertices.
The same argument of course works for v ∈ B. So we have shown
that C ∪ A ∪ B has no cutvertices.

What does a block look like? We can give a very precise classifica-
tion.

Lemma 11. Let G be a graph, and H a block of G. Then H is an induced
subgraph of G, and three cases are possible:

1. H contains just a single vertex of degree zero, an isolated vertex.

2. H consists of two vertices connected by an edge, and this edge is a bridge.

3. H is two-connected.
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Conversely, an isolated vertex always forms its own block, and the two
vertices incident to a bridge always form a block.

Exercise 4. Prove this. For the second case, use Lemma 10, and for the
last, use Menger’s theorem.

Our next question to ask is of course how the blocks may overlap.
For the division of a graph into its connected components, they may
of course not overlap at all, but for finding the twoconnected compo-
nents we will have to allow a little bit of overlap. Fortunately, we can
show that this is only ever a single vertex.

Lemma 12. Let G = (V, E) be a graph. Any two blocks of G intersect
in only zero or one vertices. If they intersect in a single vertex, that vertex
must be a cutvertex of G.

Proof. Suppose for contradiction that A and B are two blocks of G,
and A ∩ B ∋ u, v. It is clear by Lemma 11 that at least one of them has
to be two-connected, say A.

Since A and B are both connected, there exist paths P and P′ con-
necting u to v in A and B respectively. If u ∼ v is not an edge, gluing
together P and P′ yields a cycle C intersecting both A and B in the
two vertices u and v, contradicting Lemma 10.

If u ∼ v ∈ E, we could have been unlucky and picked both P and
P′ as the path consisting of just that one edge. However, we know
A is two-connected, so in A there has to be two independent paths
between u and v. So we can just pick the one that is not the single
edge, and then the union is again a cycle, yielding the first part of the
lemma.

For the second part the lemma, suppose A and B are two blocks
intersecting in v, but v is not a cutvertex of G. Then, pick a neigh-
bours a and b of v in A and B respectively.10 Since v is not a cutvertex 10 These must exist, since otherwise

one of the blocks would be of size one
and thus a subset of the other, which is
absurd.

of G, there exists a path in G from a to b not using v. But then this
path together with the path a v b forms a cycle in G, intersecting A in
a and v and intersecting B in b and v – and this is a contradiction with
Lemma 10.

Corollary 13. Any vertex v of G which is not a cutvertex is contained in
exactly one block.

Lemma 14. Suppose u and v are two adjacent vertices. Then u and v belong
to the same block.

Proof. If the edge u ∼ v is a bridge, then the set {u, v} is itself a block
by Lemma 11, and so we are done.

If it is not a bridge, then there is some path from u to v in G not
using the edge u ∼ v, and so this path together with the edge forms
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a cycle. A cycle, however, is a graph with no cutvertices, so the
subgraph it forms must sit within a maximal cutvertexless subgraph –
a block. So in particular u and v must share a block.

In fact, we can prove something much stronger than just that they
intersect in nice ways – we can create a graph whose vertices are the
blocks and cutvertices of our original graph, and this graph will have
a very nice structure.

Figure 3: A graph, with its blocks
circled in blue and labelled with red
capital letters and its cutvertices labelled
in red minuscule letters. Below, the
corresponding block graph, with the
same labeling.

Definition 15. Let G be a graph, let A be its collection of cutvertices,
and B its collection of blocks. The block graph of G is a bipartite graph
with vertices A ⨿ B, where an edge is drawn from a ∈ A to b ∈ B if a
is a vertex in B.

Lemma 16. Let G be a graph and B(G) its block graph. A walk in G corre-
sponds to a walk in B(G) which intersects the same blocks and cutvertices in
the same order. Likewise, for any walk in B(G), there exists at least one walk
in G which corresponds to it.

“Proof”. Look at Figure 4 and convince yourself it is obvious.

Exercise 5. Prove this rigorously.11 11 I made an effort while writing the
lecture notes, and it turned immediately
into an unenlightening division into
four cases.Lemma 17. For any graph G, its block graph is a forest. If G is connected,

its block graph is a tree.

Proof. It is clear that if we prove the second assertion, the first fol-
lows by applying it to each connected component. So assume G is
connected.

Now assume for contradiction that the block graph of G contains
a cycle. Since the block graph is bipartite, this cycle has to traverse
at least two blocks of G. By Lemma 16, this cycle in the block graph
corresponds to a cycle in G, and this cycle must intersect two different
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Figure 4: Figure 3 with a walk drawn
in in red on the graph, and its corre-
sponding walk on the blackgraph, also
in red.

blocks. If you think through the details of how the correspondence
between walks in the graph and its block graph works,12 it is clear 12 Such as by doing the exercise to prove

Lemma 16.that this cycle must intersect the blocks in at least two vertices, and so
we have a contradiction with Lemma 10.

Exercises

Exercise 6. Let G = (V, E) be a graph, and define a relation ≈ on E
by that f ≈ e if e = f or there is a cycle in G using both f and e. First,
prove that this relation is an equivalence relation.

Second, prove that for any equivalence class F of edges under this
equivalence relation, the edge-induced subgraph G⟨F⟩ is a block of G,
and for any block of G, its edges are all equivalent under ≈. So there
is a one-to-one correspondence between equivalence classes under ≈
and blocks of the graph.
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