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We study the notion of a graph being planar, define its planar dual, and
prove some results about when a graph is planar. We give most of
a proof of the theorems of Kuratowski and Wagner about forbidden
minors for planar graphs.

Three-connected graphs

While the topic of this lecture is planarity, we will need a result about
the structure of three-connected graphs. So we begin by proving this.

Figure 1: A graph with an edge be-
tween x and y highlighted in red. On
the right, the result of contracting this
edge.

Definition 1. Let G = (V, E) be a graph and e = x ∼ y be an edge
of G. The contraction of e is the graph G/e, which we construct as
follows:

Introduce a new vertex vxy, and let V(G/e) = (V \ {x, y}) ∪ {vxy}.
Replace each edge w ∼ x or w ∼ y with an edge w ∼ vxy.

Lemma 2. If G = (V, E) is three-connected and has more than four vertices,
then there exists an edge e ∈ E such that G/e is again three-connected.

Proof. Suppose there is no such edge, so that for every edge e = x ∼ y
there is a separating set X of G/e on two or fewer vertices. Now,
since G is three-connected, we must in fact have X = {vxy, z}.

Then the set {x, y, z} must be a separating set for G. Each of these
three vertices must have a neighbour in every connected component
of G[V \ {x, y, z}].2 Let C be the smallest such component, and further 2

Exercise 1. Prove this.assume we chose x, y, and z in such a way that |V(C)| was minimal
across all choices.

Now, choose a neighbour v of z in C. By our assumption, no
edge-contracton is three-connected, so in particular G/(v ∼ z) is not
three-connected. By entirely the same argument as before, we can
find a vertex w such that {z, v, w} separates G.

Again, each of z, v, and w has a neighbour in each connected
component of G[V \ {z, v, w}]. Since there is an edge between x and y,
they must be in the same component, and so there is a component D
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which contains neither. Since v ∈ C, each of its neighbours is also in
C, and so in particular is its neighbour in D.

So D ∩ C ̸= ∅. Since D does not contain any of x, y, or z, their
removal can’t disconnect D, and so it follows from this that D ⊆ C.
However, D clearly does not contain v, being a connected component
of G[V \ {z, v, w}], while C does contain v. So D is in fact strictly
smaller than C, which is a contradiction, since we assumed C was
minimal. So the lemma follows.

We also state, but do not prove, a classification of the three-
connected graphs, due to Tutte. It is in some sense analogous to
our theorem about two-connected graphs being constructible by
adding paths to a cycle graph.

Theorem 3 (Tutte, 1961). A graph G is three-connected if and only if there
exists a sequence G0, G1, . . . , Gn of graphs, where G0 = K4, Gn = G, and
for every i ∈ [n] the graph Gi has an edge u ∼ v with dGi (u), dGi (v) ≥ 3
and Gi−1 = Gi/(u ∼ v).

Planarity

One way to think about the notion of planarity is that we want to
study graphs arising from maps, as we saw in the exercise session.
Another might be that we just want to find nice ways to draw graphs.
Let us give a not very precise definition of what we mean by drawing
a graph:

Definition 4. A drawing or embedding of a graph in R2 is a way of
placing all the vertices of the graph at distinct points, and drawing an
arc3 between any two adjacent vertices. 3 In a more precise definition we

would have to state what we assume
about these arcs – are they continuous,
smooth, piecewise linear?

We say that an embedding is planar, and call the embedded graph
a plane graph, if this can be done so that none of the edges intersect.

Definition 5. Any planar embedding of a graph divides the plane
into several connected components, called faces. Exactly one of these
faces is unbounded, and any other faces are bounded.4 4 In order to prove this you need the

seemingly obvious but surprisingly
hard-to-prove Jordan curve theorem.

Generally, any cycle C in a plane graph G = (V, E) will separate
the vertices of G into three sets,

V = O ⨿ V(C)⨿ I,

where O are the vertices outside the cycle and I the vertices inside
the circle. There are no edges between the sets O and I.

Now we can give a definition of the notion of planar dual, which
we introduced in the exercises:
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Definition 6. Let G = (V, E) be a plane graph, that is, a planar graph
with a given embedding. The planar dual G∗ = (F, E∗) of G is the
multigraph whose vertices are the faces of the embedding of G, and
where we draw an edge between two faces f and f ′ if they border
each other.

There is a natural one-to-one correspondence between E and E∗

by sending each edge e ∈ E to the edge between the two faces it
separates.

See Figure 2 for an illustration of this.

Figure 2: A plane graph, with circular
black vertices and grey edges, and
its planar dual, with black crosses as
vertices and red edges. Notice how the
correspondence between E and E∗ is on
display here – each red edge intersects
precisely one grey edge, and vice versa.

Next, let us prove a theorem about what is often referred to as
Euler’s formula, though Euler in fact did not think about this for
graphs but for polyhedra.

Theorem 7 (Euler’s formula). Let G = (V, E) be a connected planar
graph, and let f be the number of faces for some planar embedding of G.
Then5 5 The thing on the left-hand side here

is called the Euler characteristic, which
is the first step on a long journey of
geometry and the genus of surfaces.
If you want a book-length discussion
of the history of this formula, and the
history of the notion of mathematical
proof in general, read Imre Lakatos
Proofs and Refutations.

|V| − |E|+ f = 2,

and so in particular any two planar embeddings have the same number of
faces.

Definition 8. Let G = (V, E) be a connected planar graph, fix a planar
embedding of it, and construct its planar dual G∗ = (F, E∗). Next, fix
a spanning tree T = (V, ET) of G, and consider its complement in the
planar dual, T∗ = (F, E∗ \ ET).

Now, let us show that this T∗ is in fact a tree.6 If T∗ were dis- 6 We already showed this in the exercise
session, but let us repeat ourselves.connected, one of its connected components would not contain the

unbounded face, and this set of faces would be enclosed by a cycle of
T. But T has no cycles, since it is a tree.

If T∗ contained a cycle, this cycle would necessarily enclose a vertex
of T, which would be separated from the rest of T, and so T would be
disconnected, which is again impossible since T is a tree.

So, we have seen that T is a tree on |V| vertices and thus has
|V| − 1 edges, and T∗ is a tree on |F| vertices and thus |F| − 1 edges.
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However, since T∗ has as its edges the complement of the edges of T,
they must together have |E| edges. So we have shown that

(|V| − 1) + (|F| − 1) = |E|,

which rearranges to show the theorem.

It is easy to see how one might show a graph is planar – just find
a planar embedding of it. How do you prove a graph is not planar?
It is not immediately obvious how one would do that, other than by
somehow considering every embedding and finding a pair of edges
which intersect.

So we are interested in simpler ways to prove that a graph is not
planar. Our first method is just a corollary of Euler’s formula.

Corollary 9. If G = (V, E) is a planar graph on at least three vertices, then

|E| ≤ 3|V| − 6.

If it additionally does not contain a triangle, then

|E| ≤ 2|V| − 4.

Proof. We will prove this by a double counting argument. The thing
we will count is the number pairs of an edge and a face it is incident
to, counting with multiplicity.7 7 So, for a K2, its one edge is incident to

the single face twice, once per side of
the edge.

On the one hand, clearly, each edge is incident two two faces, so
the total is 2|E|. On the other hand, each face clearly has at least three
edges incident to it, so the the total is at least 3|F|.

So we have seen that 3|F| ≤ 2|E|, which together with Euler’s
formula gives the result. If G additionally contains no triangles, then
of course each face is incident to at least four edges,8 giving us instead 8 You see here how we could get an

entire family of results, by assuming
that G has no cycles of length less than k
for varying k. The length of the shortest
cycle in a graph is its girth, as we shall
see in our next lecture.

4|F| ≤ 2|E|, which together with Euler’s formula rearranges to the
stronger result.

Corollary 10. The graphs K5 and K3,3 are non-planar.

Proof. For K5, it follows by the first part of the previous corollary. K3,3

is of course bipartite, and so in particular contains no triangles, and
so it follows for this graph by the second part of the corollary.

So we have shown two graphs to be non-planar. This in fact
gives us a more general method to see that a graph is non-planar:
If it contains a subgraph isomorphic to K5 or to K3,3 it cannot be
planar, since already that subgraph can’t be embedded without edges
crossing, and adding more edges and vertices certainly won’t change
that.

It turns out that in fact this classifies exactly which graphs are non-
planar, if we expand our notion of “containing” from just “having a
subgraph” to the notion of a minor.
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Definition 11. Let G and H be graphs. A subdivision of H is a graph
where some of the edges of H were replaced by paths. If a graph G
contains a subdivision of H,9 then H is a topological minor of G. 9 That is, has a subgraph isomorphic to

a subdivision of H.
It should be intuitively clear that a subdivision of H is planar if

and only if H is, so the operation of taking subdivisions doesn’t affect
planarity. So if a graph has a topological minor that is non-planar,
then it itself is also non-planar.

There is also a second notion of minor, which is what we normally
mean by being a minor:

Definition 12. Let G and H be graphs. H is a minor of G if there is a
subgraph G′ of G such that H can be obtained from G′ by a sequence
of edge-contractions. Equivalently, H is a minor of G if it can be
obtained from G by deleting vertices or edges and contracting edges.

If you think about it for a bit, it should be clear that it is also true
that having a minor in this sense that is non-planar means you cannot
yourself be planar.

So, a graph that has a K5 or a K3,3 as a minor or topological minor
cannot be planar. In fact, it turns out that the converse is also true –
any non-planar graph has one of them as a minor and as a topolog-
ical minor. This is the content of the theorems of Kuratowski and
Wagner:

Theorem 13 (Kuratowski, 1930). A graph is planar if and only if it
contains neither a K5 nor a K3,3 as a topological minor.

Theorem 14 (Wagner, 1937). A graph is planar if and only if it contains
neither a K5 nor a K3,3 as a minor.

The proof of the hard direction of this theorem is in three steps, of
which we will only do the second:

1. Show that a graph contains one of K5 or K3,3 as a topological minor
if and only if it contains one of them as a minor.10 10 This is Proposition 1.7.3 and Lemma

4.4.2 in the book by Diestel, if you want
to see a proof – or just Google for it.2. One proves that any three-connected graph which does not contain

K5 or K3,3 as a minor is planar.

3. Finally, we show that the edge-maximal graphs without K5 or K3,3

as a topological minor are three-connected.11 The idea then is that 11 Which is the content of Lemmas 4.4.4
and 4.4.5 in the Diestel book.given any graph G not containing the forbidden minors, you can

add edges avoiding creating a K5 or K3,3 until it is maximal, and
it will then be three-connected without those minors, which by
the previous step implies that it is planar. Then of course any
subgraph of it is also planar, and so in particular the G you started
with is planar.



lecture 11: planarity · 1ma170 6

Having seen the overall structure of the proof, let us actually do a
proof of the second step:

Lemma 15. Let G = (V, E) be a three-connected graph without a K5 or a
K3,3 as a minor. Then G is planar.

Proof. We prove this by induction in the number of vertices. The
smallest three-connected graph is a K4, and this one is evidently
planar and has no such minors.

So assume |V| > 4 and that the claim holds for all graphs on fewer
vertices. Since G is three-connected on more than four vertices, it
follows from Lemma 2 that there exists an edge e = {x, y} in G such
that the contraction G/e is again three-connected.

Now, this G/e is a minor of G, and hence it can’t contain a K5 or
K3,3 minor.12 So by our induction hypothesis, G/e is planar. 12 This follows from the fact that being a

minor is a transitive relation – if G is a
minor of G′ and G′ a minor of G′′, then
G is a minor of G′′.

Now, consider a planar embedding of G/e. If we remove the
vertex vxy, the one we got by contracting the edge x ∼ y, we again get
a plane graph, and in this drawing of G/e − vxy there is one face that
used to contain vxy. Since G/e is three-connected, the boundary of
this face is a cycle C.13 13 Why do we need three-connectedness

here?

Figure 3: Top left, a three-connected
graph with an edge x ∼ y highlighted.
Top right, another graph which is the
result of contracting this edge, with the
new edges and vertices in red. Bottom,
the result of removing the contraction
vertex vxy, with the face on which it sat
indicated by a dotted red line, which is
also the cycle C, and the sets X and Y
indicated.

Let X = N(x) \ {y} be the set of neighbours of x other than y, and
likewise let Y = N(y) \ {x}. Notice how X and Y are both subsets of
the cycle C.

Now, if we take our embedding of G/e and remove all edges
vxy ∼ w for w ∈ Y \ X, we get an embedding of the graph G[V \ {y}],
with the vertex vxy replacing x. So if we can find a way to add y back
into this drawing, then we will have a planar embedding of G.

So, number the vertices of X as x1, x2, . . . , xr in clockwise order
around the cycle C, and notice that they partition the cycle C into
paths Pi from xi to xi+1, as in Figure 4.
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Figure 4: A local picture of the embed-
ding of G[V \ {y}], with the vertices of
X labelled, and the paths between in
dashed red lines.

If we could show that all the vertices of Y lie on the same path
Pi, then we could add y back into the drawing by adding to the face
bounded by this path and the edges between it and x.

So suppose for contradiction that not all neighbours of y lie on the
same path Pi. There are three cases:14

14 These are exhaustive, but not mutually
exclusive.

Figure 5: A drawing of the first case in
our case analysis.

1. Suppose y1 ∈ Y \ X lies on the interior of some Pi, and there is a
y2 ∈ Y that is not on Pi. Then {x, y1, y2} and {y, xi, xi+1} form the
vertices of a topological K3,3. This is illustrated in Figure 5.

Figure 6: A drawing of the second case
in our case analysis.

2. Suppose that X ∩ Y has more than two elements – say xi, xj, xk. But
then {x, y, xi, xj, xk} forms the vertex set of a topological K5. This is
illustrated in Figure 6.

Figure 7: A drawing of the third case in
our case analysis.

3. If neither of the above two cases occurs, but y still has neighbours
that do not share a path, we must have that y has two neigh-
bours shared with x, say xi and xk, which do not lie on a common
path. Then there must be vertices xj and xℓ between them. Now
{xi, x, xk} and {xj, y, xℓ} form the vertices of a topological K3,3.
This is illustrated in Figure 7.

So we have seen that all neighbours of y other than x share a path,
and so we can draw y into the corresponding face, getting a planar
embedding of the entire graph G.

Exercises


	Three-connected graphs
	Planarity
	Exercises

