
Lecture 12: Vertex colouring · 1MA020
Vilhelm Agdur1

1 vilhelm.agdur@math.uu.se

27 November 2023

We study the notion of a vertex colouring of a graph, and prove some
results about the chromatic number of a graph. We prove Brooks’
theorem, the five-colour theorem for planar graphs, and the three-colour
theorem for outerplanar graphs. We use the latter to prove the art
gallery theorem.

Introductory results

We already saw the notion of colouring a graph in an earlier lecture,
but we proved nothing about it other than some very basic bounds.
Let us restate the definition, and then move on to proving some more
interesting things.

Figure 1: Example of an undirected
graph G that is three-coloured. In
this case the chromatic number of G
is χ(G) = 3 since we can find a three-
colouring of G but not a two-colouring.

Definition 1. A k-colouring of a graph G = (V, E) is a function
c : V → [k], where we think of the numbers 1, 2, . . . , k as colours,
such that no two adjacent vertices are sent to the same colour.2 The

2 On rare occasions, we will want to
think about colourings that do not
necessarily fulfill this condition. Then
we will call those colourings improper,
and the ones with the property will be
proper colourings.

chromatic number of a graph G, denoted χ(G), is the least integer k
such that G has a k-colouring.

In order to upper bound the chromatic number of a graph, the
most obvious approach is of course to construct a colouring of it. The
most straightforward way to do this is greedily:

Definition 2. Let G = (V, E) be a graph with an ordering on the
vertices, say v1 < v2 < . . . < vn. On the colours, we use the obvious
ordering 1 < 2 < . . .. The greedy colouring algorithm starts with
an empty colouring, and then at each time-step, it colours the first
uncoloured vertex (according to the ordering on the vertices) with the
first colour that has not been used on any of its neighbours.

If we do nothing special in the choice of ordering of vertices, we
don’t get any very strong bound from this, of course. We do, how-
ever, get the following general bound:

Lemma 3. For any graph G with maximum degree ∆, we have

χ(G) ≤ ∆ + 1.

Proof. Pick an arbitrary ordering on the vertices, and run the greedy
colouring algorithm. For any vertex, when it is about to be coloured,
it has at most ∆ neighbours that already have colours, and so one of
the first ∆ + 1 colours must be unused.
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If we know something about the graph, we can be a bit more clever
in our choice of ordering, and get a better bound. To do this, however,
we first need to define the breadth-first ordering of the vertices of a
graph.

Figure 2: This is a visualization of the
order that we visit each vertex in a
graph using Breadth-first search.

Definition 4. Let G = (V, E) be a graph. Breadth-first search started at
a vertex v proceeds as follows:

1. Initialize a list (or a tree) and a queue3 by adding v to the list (root

3 A queue is a first in, first out, data
structure; you add (enqueue) elements
in the back and remove them (dequeue)
from the front so that the element that
has been the longest in the queue is
removed first.

of tree) and enqueuing it to the queue .

2. Now, until the queue is empty do the following:

3. Dequeue a vertex from the queue, let’s call it the current vertex.

4. For each neighbour of the current vertex: if the neighbour is not
already in the list (tree), add it to the list (tree, as a child of the
current vertex) and enqueue it to the queue.

This algorithm will return a list of the vertices of the connected
component containing v. The order in which these vertices appear is
called a breadth-first ordering of the vertices, started at v.

We could also modify the algorithm slightly (as indicated in paren-
thesis), to make each vertex remember which vertex was the currently
visited one when it was added to the list of discovered vertices. Then
we get a breadth-first spanning tree rooted at v by having each vertex
consider its parent as the vertex that discovered it.

Lemma 5. Suppose G is a graph with maximum degree ∆, whose vertices do
not all have the same degree. Then

χ(G) ≤ ∆.

Proof. We may assume that G is connected because otherwise we can
look at each connected component. Since not all vertices have the
same degree, there must exist a vertex v with dv < ∆. Now order the
vertices of G according to the inverse of the breadth-first order on the
vertices started at v,4 and run the greedy colouring algorithm with 4 By assumption G is connected, so

the breadth-first search will find every
vertex.

this ordering.
The crucial property we need from the ordering is that every vertex

except v will, when visited by the greedy colouring algorithm, have
at least one neighbour that has not yet been coloured, namely its
parent. So it has at most ∆ − 1 coloured neighbours, and so there is
always at least one colour available among the first ∆ colours.

When we finally get to v, it has degree less than ∆, so it too has
fewer than ∆ coloured neighbours, and we can pick a colour from
among the first ∆.
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We can also make use of our previous work on connectivity to
break down the problem of finding a colouring of a graph into finding
a colouring of its two-connected blocks.

Lemma 6. Suppose G is some graph which has at least one two-connected
block, and let B1, B2, . . . , Br be its collection of two-connected blocks. Then

χ(G) = max
i∈[r]

χ(Bi).

For a graph G that has no two-connected blocks, χ(G) = 2 if G has at
least one edge, and χ(G) = 1 if it has no edges.5

5

Exercise 1. Prove this part of the
theorem statement.

Proof. That the chromatic number of G is lower bounded by the max
over the blocks is trivial. To see the other direction, consider the block
graph of G, which we saw in our previous lecture is a forest.

Colour each block of G, using at most maxi∈[r] χ(Bi) colours.6 Then, 6 If the block is two-connected, this is
trivially possible. Otherwise it can be
coloured with at most two-colours, since
it must be an isolated vertex or a K2.

because any two blocks only intersect in at most one vertex, we can
permute the colours in each block so that they agree on the cutver-
tices, and this can be done in such a way that we get a colouring on
the entire graph because the block graph is a tree.7 Clearly permuting 7

Exercise 2. Write out the details of
this argument – how do you actually
algorithmically do this?

the colours does not add new colours, so our global colouring will
also use only maxi∈[r] χ(Bi) colours.

Brooks’ theorem

When we first introduced the notion of a colouring of a graph, we
found an example where Lemma 3 is actually sharp: For the com-
plete graph, we have χ(Kn) = n = ∆(Kn) + 1. There is also another
example, namely the cycle graphs of odd length, which have chro-
matic number three and maximum degree two.

Are there any other cases where this inequality is sharp? It turns
out that these are in fact the only connected examples, which is the
content of Brooks’ theorem.

Theorem 7 (Brooks, 1941). Let G be a finite connected graph with maxi-
mum degree ∆ that is not complete nor a cycle of odd length. Then

χ(G) ≤ ∆.

Proof. If G is not regular, then the theorem follows from Lemma 5, so
we can assume that all vertices of G have degree k. Now, obviously,
the only 1-regular connected graph is K1, and we have assumed G is
not complete.

For k = 2, the only connected 2-regular graphs are the cycles. We
have assumed G is not a cycle of odd length, and we know the cycles
of even length have chromatic number 2.
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So we may assume k ≥ 3. We may additionally, by Lemma 6,
assume that G is at least two-connected. So we now divide into two
cases:

Suppose G is in fact also three-connected. Then, since G is not
complete, we can find three vertices a, v, b such that a ∼ v, b ∼ v ∈ E,
but a and b are non-adjacent. Since G is three-connected, the graph
G[V \ {a, b}] is connected.

We can now colour G in a way similar to what we did for Lemma
5. First, we let a and b both take the colour 1, which is possible since
they are non-adjacent. Then we run the greedy colouring algorithm
on the rest of the vertices using the inverse of a breadth-first search
order started at v.

Again, each vertex other than v will have fewer than k already-
coloured neighbours when it is visited,8 so they can be coloured using 8 Even taking into account that a and b

already have a colour – think about why
this is true.

only k colours, as before. Now, v will have all of its k neighbours
coloured – however, two of those neighbours, a and b, have the same
colour, so its neighbours are using fewer than k distinct colours, so
there is one left over for v.

So for the other case, suppose that in fact κ(G) = 2. Now, if we
could find a triple of vertices a, v, b with the same properties as in the
three-connected case, that argument would of course work again – so
we need a new argument for why such a triple exists.

So let a be an arbitrary vertex of G. If G[V \ {a}] is still two-
connected, we can pick v as any neighbour of a, and b as any neigh-
bour of v other than a, and these will have the required properties.

Figure 3: A sketch of the block graph
of G[V \ {a}] and the vertex a drawn
in in red, with dotted edges connecting
it to blocks it is in as a non-cutvertex,
and the putative but impossible leaf Bℓ

that does not contain a. Notice how the
addition of a will create cycles forcing
everything except Bℓ to become a single
block. Also notice how a being the
cutvertex in Bℓ wouldn’t help – that
would create a dotted line from a to the
parent of Bℓ, which still does not create
a cycle with Bℓ in it.

Now, if G[V \ {a}] is not two-connected, we claim that its block
graph must be a tree with at most k leaves, and each of these leaves is
a block Bi which contains a non-cutvertex bi which is adjacent to a in
G.

If this were not the case, there would be some block Bℓ such that
adding a back in did not create a cycle intersecting Bℓ in at least two
vertices, and so Bℓ would still be a separate block in G. But G is
two-connected, so this is impossible.

Now we pick a as the central vertex and b1 and b2, say, as the other
two vertices. To see that this is a triple of vertices with the right
properties, we need to see that b1 and b2 are non-adjacent. Now, we
know that if they were adjacent they would be in the same block, but
we also also know they are not cutvertices and so belong to only one
block, and by assumption they are in the distinct blocks B1 and B2.
So they are not adjacent, and we have found a triple with the right
properties, finishing the proof.
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Colouring planar graphs

One of the perhaps more famous theorems of graph theory is that any
map can be coloured in at most four colours.9 Of course, part of the 9

Exercise 3. This bound is sometimes
sharp. Try to think of a planar graph
that is not three-colourable. Can you
think of two examples, neither of which
contains the other?

reason this is famous is because it has only been proved by means of
a computer checking many many cases, so in a sense no human has
ever understood an entire proof.

However, the weaker statement that any planar graph can be
coloured with five colours can be proven much more easily. In fact,
the proof we will give is a modification of a flawed early “proof” of
the four-colour theorem from the late nineteenth century.

Theorem 8. For any planar graph G, χ(G) ≤ 5.

Proof. We prove this by induction in the number of vertices. The base
case of the one-vertex graph is trivial.

For the inductive step, let v be a vertex whose degree in G is min-
imal. We claim that dv ≤ 5.10 Now, if we let G′ = G[V \ {v}], this is 10 This follows from the inequality

|E| ≤ 3|V| − 6

which we proved last lecture.

clearly still planar and has fewer vertices, so by our induction hypoth-
esis we can five-colour it.

If dv ≤ 4, its neighbours only use at most four colours, so there’s
a fifth colour available for us to give it. So we may assume dv = 5. If
v has two neighbours which have the same colour, there is again an
unused colour we can assign to it. So we assume all five neighbours
have different colours.

Now, if we fix a planar embedding of G, we can call v’s five neigh-
bours v1, v2, . . . , v5 in clockwise order, and we can relabel our colours
so that vi has colour i for each i.

Let G(1, 3) be the induced subgraph of just vertices coloured 1 or
3, as we did in the exercise about Kempe chains. If v1 and v3 are in
different Kempe chains, that is, in different connected components of
G(1, 3), we can do a Kempe change, swapping the two colours in one
of the connected components, so that v1 and v3 have the same colour.
After doing this, one colour will of course have become available for v,
and so we can finish our colouring.

So suppose instead that v1 and v3 are in the same (1, 3)-component.
Then there exists a path P from v1 to v3, not using v, all of whose
vertices are coloured 1 or 3. This path, together with the path v1 v v3,
forms a cycle, which separates G into an inside and an outside.

By construction, v2 has to lie on the inside of the cycle, and v4

on the outside. So in particular they must be in different (2, 4)-
components, and so we can apply a Kempe change to these two
components, freeing up a colour for v just as before.
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Figure 4: An illustration of the situation
in the proof of the five-colour theorem.
v1 and v3 are in the same (red, blue)-
component, which forces the existence
of the cycle indicated by a dashed red
line. This cycle, however, separates v2
and v4 into separate (green, orange)-
components, so v4 can swap its orange
colour with the green of its neighbour.
This frees up the colour orange for v to
use.

The art gallery theorem and outerplanar graphs

Consider the following problem: We are given an arbitrary simple
polygon11 in the plane, which we interpret to be an art gallery. We 11 It being simple means that it contains

no holes and no two sides intersect.want to post guards in the gallery to watch over every point of the
gallery, to prevent any climate activists from throwing tomato soup
on the art. How many guards do we need?

We will prove the following theorem:

Theorem 9. For any art gallery (simple polygon) with n corners, we need at
most

⌊ n
3
⌋

guards to watch the entire gallery.

The first step to proving this is of course to turn the simple poly-
gon into a graph.12 We do this by first triangulating the polygon, and 12 Since, of course, if the solution didn’t

involve graphs, the problem wouldn’t
be in this course.

then interpreting each corner as a vertex and each line as an edge, as
illustrated in Figure 5.

Figure 5: A simple polygon on the left,
and a triangulated version on the right,
which we can interpret as a graph with
corners as vertices, and the black and
red lines as edges.

We can make two observations about the resulting graph, one
obvious and one less immediately obvious. The first is that this graph
is planar and comes with an obvious embedding, from how we drew
the polygon. The second is that in fact all the vertices of this graph are
incident to the unbounded face – there are no vertices on the “inside”
of the graph.
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There is in fact a name for the class of graphs that have this second
property:

Definition 10. A graph G is called outerplanar if there exists a pla-
nar embedding of it in which all the vertices are incident to the un-
bounded face.

For these graphs, we can do a lot better than the five-colour theo-
rem we proved earlier.

Theorem 11. All outerplanar graphs are three-colourable.

Proof. By Lemma 6 it suffices to prove this for two-connected outer-
planar graphs, for which we prove it by induction on the number of
vertices.

The base case of |V| = 1 is trivial, so let G be an outerplanar
graph on n ≥ 2 vertices. Since adding edges cannot decrease the
chromatic number or connectivity, we may assume that G is in fact
edge-maximal two-connected outerplanar. This implies that all
faces are triangles, since any face that isn’t could be subdivided into
triangles by adding an additional edge, while still leaving the graph
two-connected outerplanar.

We claim that the planar dual of G with the unbounded face
deleted13 is a forest,14 since if there were a cycle in the weak pla- 13 This is called the weak planar dual of G.

14 In fact it will be connected, since we
assumed G is two-connected, but we
don’t need this here.

nar dual, this cycle would enclose a vertex of G, which would then
not be incident to the unbounded face.

So let f be some leaf of the weak planar dual. We know that this
face is a triangle, and since it is a leaf, and thus only incident to at
most one other bounded face, it must contain a vertex v incident only
to f and the unbounded face.15 In particular, dv = 2. 15 This is where we use the assumption

that G is two-connnected: If it were not,
v could be a cutvertex of G, and thus
actually sit in two different faces despite
f being a leaf of the weak planar dual.

If we delete v from G, we get a smaller graph that is still outerpla-
nar, and so by induction it is three-colourable. Now v only has two
neighbours in this graph, and so we can colour v with the third colour
unused by both its neighbours.

How does this give us a proof of the art gallery theorem? Well,
what we have seen is that we may three-colour the corresponding
graph, and of course any colour class of this colouring must contain
one vertex from each triangle. So if we post a guard at all the red
vertices, each triangle is seen by one of these guards, and thus the
entire graph is seen.

Exercises

Exercise 4. Prove that every tree is two-colourable.
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Exercise 5. What is the chromatic number of the hypercube graph in
n dimensions?

Exercise 6. In this exercise, we use some spectral methods for deriving
results about the chromatic number. We rely on the following lemma,
which can be proved using the technique of Rayleigh-quotients:

Lemma 12. Let G be a graph and H an induced subgraph of G, and let their
adjacency matrices be AG and AH respectively. Then

λmin (AG) ≤ λmin (AH) ≤ λmax (AH) ≤ λmax (AG) ,

and
δ(G) ≤ λmax (AG) ≤ ∆(G),

where δ(G) and ∆(G) are the minimum and maximum degree of G.

Use the above lemma to prove the below theorem:

Theorem 13 (Wilf, 1967). For any graph G with adjacency matrix AG, we
have

χ(G) ≤ λmax (AG) + 1.

Hint: Let H be a minimal induced subgraph of G with χ(H) =

χ(G). Can you relate the minimum degree of H to the chromatic
number of G?16 16 If you want a solution, a full proof is

in the lecture notes from last year.
Exercise 7. Assume you have to separate English alphabet letters into
boxes such that no two consecutive letters end up in the same box.
What is the minimum number of boxes you need for this task?

Exercise 8. Prove that if a graph has at most two cycles of odd length
then it can be coloured with 3 colours. Hint: a bipartite graph has
χ(G) = 2.
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