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We introduce a new tool to the course, the probabilistic method, and
use it to prove some new results. We also introduce the Erdős-Rényi
random graph, which is interesting in its own right as well as being a
tool in the probabilistic method.

The minimum bisection problem

Suppose we are given a graph G, which is too large to fit on a single
computer – so we wish to distribute the computation we want to do
on the graph between two machines. We imagine the computation we
want to do is in some sense possible to do “locally” – so if the graph
had two equally sized connected components, the two computers
wouldn’t have to talk to each other at all.

Of course, most graphs do not split up that nicely, but we can still
try to divide it into two equally sized parts that have as few edges
between them as possible. How well can we do this?

Proposition 1. For any graph G = (V, E) on n ∈ 2N vertices with
maximum degree ∆ < n

2 , there exists a partition A ⨿ B of V, such that
|A| = |B| = n

2 , and

e(A, B) ≤ |E|
2

,

where e(A, B) is the number of edges between A and B.

Proof. Let Gc be the complement graph of G – that is, Gc has the same
vertices as G, and there is an edge x ∼ y in Gc if and only if x ∼ y is
not an edge of G.

Since we assumed ∆ < n
2 , it is clear that the minimum degree of

Gc is at least n
2 , and so by Dirac’s theorem2 there exists a Hamilton 2 Which we proved earlier in the course.

cycle in Gc. Picking every second edge of this Hamilton cycle, we get
a perfect matching M on Gc. This process is illustrated in Figure 1.

Now, we apply the probabilistic method, picking a random parti-
tion A ⨿ B of V: For each edge of M, we randomly place one of its
endpoints in A and one in B, independently between different edges.
We can then compute that

E [|e(A, B)|] = E

[
∑

x∼y∈E
1{x∼y∈E(A,B)}

]
= ∑

x∼y∈E
P (x and y are in different sets) .
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Figure 1: A graph on eight vertices,
with its edges drawn in black. Since
it has maximum degree three, we can
find a Hamilton cycle in its complement
graph, which has been drawn with
alternating dotted and stroked red
lines. By picking only the stroked red
lines, we get a perfect matching in the
complement of the graph.

Now, whenever x and y are not connected by an edge in M, their
assignment to A or B is independent, and so the probability that they
are in different sets is precisely 1

2 . However, we picked our matching
M so that it is a perfect matching on Gc – in particular this means that
M ∩ E = ∅, and so all of the probabilities that we are summing must
in fact be 1

2 by our previous argument.
So the sum is just a sum of |E| many 1

2 ’s, and so what we have seen

is that E [|e(A, B)|] = |E|
2 . Now, we know that the expectation is never

greater than every specific outcome, so there must exist some choice
of A and B with no more than |E|

2 edges between them, and we have
shown the proposition.

The Erdős-Rényi graph

As we saw in the previous exercise session, the simplest and most
common random graph model is the Erdős-Rényi graph, where all
edges appear independently with the same probability. Let us restate
the definition here, for completeness.

Definition 2. For any integer n ∈ N and any probability p ∈ [0, 1],
the Erdős-Rényi graph G(n, p) is a random graph on n vertices,3 where 3 We will normally assume its vertex set

is [n], unless otherwise stated.each of the (n
2) potential edges is present independently at random

with probability p.

Proposition 3. Let Ĝ = (V, E) be a labelled graph on n vertices, and
G = G(n, p) be an Erdős-Rényi graph on the same number of vertices. The
probability that G = Ĝ is precisely

P
(
G = Ĝ

)
= p|E|(1 − p)(

n
2)−|E|,
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and so in particular if p = 1
2 , the Erdős-Rényi graph is in fact a uniformly

random graph.

We proved two things about the Erdős-Rényi graph during the
exercises, but let us restate those results and their proofs here.

Lemma 4. If G = G(n, p) is an Erdős-Rényi graph, the probability that it
has an independent set of size at least k is bounded by

P (α(G) ≥ k) ≤
(

n
k

)
(1 − p)(

k
2).

Proof. There are a total of (n
k) subsets of [n] of size k, so for each such

set X ∈ ([n]k ), let AX be the event that X is an independent set in G.
Clearly, AX happens whenever none of the (k

2) possible edges

inside X are present, which happens with probability (1 − p)(
k
2). So

we can calculate, using a union bound, that

P (α(G) ≥ k) = P

 ⋃
X∈([n]k )

AX


≤ ∑

X∈([n]k )

P (AX)

= ∑
X∈([n]k )

(1 − p)(
k
2) =

(
n
k

)
(1 − p)(

k
2)

where we used in the last equality that we had (n
k) summands, giving

the lemma.

Proposition 5. For any p ∈ (0, 1), if Gn = G(n, p) is an Erdős-Rényi
graph for each n, it holds that

P (diam(Gn) = 2) → 1 as n → ∞.

It is somewhat cumbersome to explicitly write out the sequence of
random graphs and the limit every time we want to say something
about an asymptotic property of the Erdős-Rényi graph, so we will
generally use the following way of phrasing such results instead:

Proposition 6. For each fixed p ∈ (0, 1), it holds that diam(G(n, p)) = 2
with high probability.4

4 We also synonymously say that a
property holds “asymptotically almost
surely” – these two phrases are then
abbreviated to “w.h.p.” or “a.a.s.”
when convenient. In both cases, what
we mean is that the property holds
with probability tending to one as we
increase the number of vertices of the
graph.

Proof. The only graphs with diameter one are the complete graphs,
and it is easy to see5 that the Erdős-Rényi graph is not complete w.h.p.

5

Exercise 1. See this.

for any p < 1. So all we need to do is to show that diam G(n, p) ≤ 2
w.h.p.

So, for any pair of two distinct vertices i and j, let Bij be the event
that there is no edge between i and j and they additionally have no
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common neighbour. We call such a pair of vertices a bad pair – it is
clear that a graph has diameter at most two precisely when it has no
bad pairs.

Now we can compute, using the fact that edges appear indepen-
dently, that

P
(

Bij
)
= P

(i ∼ j ̸∈ E) ∧

 ∧
k∈[n]\{i,j}

(i ∼ k ̸∈ E) ∨ (k ∼ j ̸∈ E)


= (1 − p) ∏

k∈[n]\{i,j}
P ((i ∼ k ̸∈ E) ∨ (k ∼ j ̸∈ E))

= (1 − p) ∏
k∈[n]\{i,j}

(1 − p2) = (1 − p)(1 − p2)n−2,

and so letting X be the number of bad pairs, we compute using
linearity of expectation that

E [X] = E

 ∑
{i,j}∈([n]2 )

1{Bij}


= ∑

{i,j}∈([n]2 )

P
(

Bij
)

=

(
n
2

)
(1 − p)(1 − p2)n−2

which we easily see goes to zero for fixed p ∈ (0, 1) as n → ∞.
The result now follows by following the recipe for the first-moment

method, applying Markov’s inequality to see that we also have
P (X > 0) → 0 as n → ∞.

Triangles in the Erdős-Rényi graph

Having seen these two results from the exercises, let us do a slightly
more involved calculation, that will make use of the second-moment
method. In order to see interesting things happening in the G(n, p),
we will almost always have to choose a probability p that shrinks as n
grows, to control the sparsity of the graph.

Proposition 7. If p = o
(
n−1), G(n, p) a.a.s. contains no triangle. If

p = ω
(
n−1), G(n, p) contains a triangle w.h.p.6 6 As a recap on the O and Ω family of

notations, recall that f = o(g) means
that limn→∞

f (n)
g(n) = 0, while f = ω(g)

means that limn→∞
f (n)
g(n) = ∞.

We will also use the notations f ∼ g,
which means that limn→∞

f (n)
g(n) = 1,

and f = O(g), which means that f is
asymptotically not of higher order than
g, i.e. lim supn→∞

f (n)
g(n) < ∞.

Finally, we use the notation f = Θ(g),
which means that f = O(g) and
g = O( f ), and use the fact that f ∼ g
implies f = Θ(g) without comment.

Proof. For each set τ of three vertices of G, i.e. three integers from
[n], let Tτ be the event that they form a triangle, and for convenience
let us write Yτ = 1{Tτ} for the indicator variable of this event. It is
clear that P (Tτ) = E [Yτ ] = p3, and so if we let the total number of
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triangles in G be X, we compute by linearity of expectation that

E [X] = E

 ∑
τ∈([n]3 )

Yτ

 = ∑
τ∈([n]3 )

P (Tτ) =

(
n
3

)
p3 ∼ (np)3

and so if np → 0, we have E [X] → 0, and so by a first-moment
method argument there are w.h.p. no triangles in G.

Now, to prove that there are triangles if p = ω
(
n−1), it does not

suffice to see that the expected number of triangles is high,7 and so 7 As we discussed in the exercise sheet
about this – see them for an explanation
of this.

we need to also compute the variance in the number of triangles.
So we find that

E
[

X2
]
= E


 ∑

τ∈([n]3 )

Yτ


2 = E

 ∑
τ,σ∈([n]3 )

YτYσ



= E

 ∑
τ∈([n]3 )

Y2
τ + ∑

τ,σ∈([n]3 )
τ ̸=σ

YτYσ


= ∑

τ∈([n]3 )

E
[
Y2

τ

]
+ ∑

τ,σ∈([n]3 )
τ ̸=σ

E [YτYσ] ,

and for the first of the two sums we can notice that Yτ = Y2
τ always,

since it is always either zero or one, so that sum is in fact just E [X],
and so we have seen that

E
[

X2
]
= E [X] + ∑

τ,σ∈([n]3 )
τ ̸=σ

E [YτYσ] .

For the second term, we need to break it apart into how the two
sets σ and τ can overlap,8 and so we write that 8 So far, this calculation has been in a

sense “entirely standard” – any second-
moment method argument will involve
these steps, up to looking at how the
things we count can overlap. The
points where they differ is just in how
hard it is to understand these overlaps
– fortunately, how two triangles can
overlap without being equal is pretty
easy to see.

∑
τ,σ∈([n]3 )

τ ̸=σ

E [YτYσ] = ∑
τ,σ∈([n]3 )
τ∩σ=∅

E [YτYσ] + ∑
τ,σ∈([n]3 )
|τ∩σ=1|

E [YτYσ] + ∑
τ,σ∈([n]3 )
|τ∩σ|=2

E [YτYσ]

and analyse each case separately.
If they do not overlap at all, then there are six edges that need to be

present, and so E [YτYσ] = p6. There are (n
3)(

n−3
3 ) ways to choose two

disjoint sets of size three, and so in total9 9 We choose not to summarize this term
with a big-O because we will need to
compare it to a different thing of the
same order later, so we do need the
exact value. For the rest of the terms,
we summarize them, since we don’t
need more details.

∑
τ,σ∈([n]3 )
τ∩σ=∅

E [YτYσ] = p6
(

n
3

)(
n − 3

3

)

If they overlap in a single vertex, there are still six edges that need
to be present, so we still have E [YτYσ] = p6. However, there are
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n(n−1
2 )(n−3

2 ) ways to choose two sets of size three that overlap in one
vertex, and so we see that

∑
τ,σ∈([n]3 )
|τ∩σ=1|

E [YτYσ] = p6n
(

n − 1
2

)(
n − 3

2

)
= O

(
p6n5

)
.

Finally, if they overlap in two vertices, there are only five edges
that need to be present, and so we now have E [YτYσ] = p5. There are
(n

2)(n − 2)(n − 3) ways to choose two sets of size three that overlap in
two vertices, and so we have

∑
τ,σ∈([n]3 )
|τ∩σ=2|

E [YτYσ] = p5
(

n
2

)
(n − 2)(n − 3) = O

(
p5n4

)
.

Assembling this calculation, we find that

E
[

X2
]
= E [X] + p6

(
n
3

)(
n − 3

3

)
+ O

(
p6n5

)
+ O

(
p5n4

)
= O

(
p3n3

)
+ p6

(
n
3

)(
n − 3

3

)
+ O

(
p6n5

)
+ O

(
p5n4

)
and so

Var (X) = E
[

X2
]
− E [X]2

= O
(

p3n3
)
+ p6

(
n
3

)(
n − 3

3

)
+ O

(
p6n5

)
+ O

(
p5n4

)
−

((
n
3

)
p3
)2

≤ O
(

p3n3
)
+ O

(
p6n5

)
+ O

(
p5n4

)
where we did a somewhat messy calculation to get the final inequal-
ity.10 10 In particular, we observe that(

n
3

)(
n − 3

3

)
−

((
n
3

)
p3
)2

equals

− 1
12

n(3n4 − 24n3 + 71n2 − 90n + 40)

and so it is asymptotically negative, and
so we get the inequality when we drop
both terms.

So if we follow the recipe we gave in the exercises for the second-
moment method, we now need to compare the variance to E [X]2,
which we do, seeing that

Var (X)

E [X]2
≤

O
(

p3n3)+ O
(

p6n5)+ O
(

p5n4)
(Θ (n3 p3))

2

= O
(
(pn)−3

)
+ O

(
n−1

)
+ O

(
(pn)−1n−1

)
which we see must go to zero with n if pn → ∞ with n. Thus our
lemma for the second-moment method gives us that

P (X = 0) ≤ Var (X)

E [X]2
→ 0,

and so G contains at least one triangle, as desired.
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The growth of G(n, p)

We have seen whether G(n, p) contains triangles if p is asymptotically
less than or greater than 1

n . What happens if p = c
n for some c >

0? This turns out to be the “critical” range for a lot of interesting
questions. In this case, a G

(
n, c

n
)

will contain a Poisson distributed
amount of triangles, with mean c3

6 – so sometimes it has a triangle
and sometimes it does not!

Let us sketch a few more things that can be said about how the
structure of G(n, p) changes as the value of p changes. Many more
things can be said, but since we aren’t going to prove any of them,
we just give an outline here.

• If p = o
(
n−1) we don’t just get no triangles, we in fact get no

cycles of any length – so G(n, p) is a forest.

• For p = c
n with 0 < c < 1, each connected component is either

a tree or contains a single cycle. If Cmax denotes the number of
vertices in the largest component, we have

Cmax

log(n)
→ 1

c − 1 − log(c)

in probability.11 11 A sequence of random variables Xn
converges to a ∈ R in probability if, for
every ϵ > 0,

P (|Xn − a| > ϵ) → 0

as n → ∞. Note the order of the
quantifiers here: This is a pointwise
thing, in that we first fix ϵ and then
take the limit. It is not equivalent to
ask that this thing go to zero for every ϵ
simultaneously.

• If p = 1
n exactly, the largest component has about n2/3 vertices.

• For every c > 1 there exists a constant ζc > 0 such that the largest
connected component of G

(
n, c

n
)

contains about a ζc fraction of the
vertices, up to an error of about ±

√
n.12

12 Here is an incredibly precise version
of this statement, for those of you who
really enjoy quantifiers and constants:

∀c >1 ∃ζc > 0 ∀ν ∈
(

1
2

, 1
)
∃δ > 0 :

P (|Cmax − ζcn| ≥ nν) = O
(

n−δ
)

.

This largest component is unique, and is called the giant component
– all other connected components are trees on O (log(n)) vertices.
The giant component contains enough edges to be non-planar.

• If p = c log(n)
n , the graph is a.a.s. connected and Hamiltonian.

Girth and chromatic number

Already when we first introduced the chromatic number, we men-
tioned the obvious fact that a large clique forces a graph to have high
chromatic number. One might be led by this to believe that being
very sparse, without any cliques, would mean you have low chro-
matic number. This unfortunately turns out to be not at all true, in a
pretty strong sense.

Definition 8. The girth of a graph G is the length of the shortest cycle
in the graph.
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So the notion of girth generalizes the notion of being triangle-free,
which is just having girth greater than three. Of course any triangle-
free graph also contains no larger cliques, so this is indeed a strong
notion of having no cliques.

Theorem 9 (Erdős, 1959). For all positive integers k there exists a graph G
of girth and chromatic number at least k.

We leave the full proof as an exercise, but let us give a sketch of
how it is done in the lecture itself.

Proof sketch. Fix a k ≥ 3 and an ϵ ∈
(

0, 1
k

)
, and let p = n−(1−ϵ). Let G

be a G(n, p). Our strategy is the following:

1. We count the number of cycles of length at most k in G, and show
that with probability greater than 1

2 there are fewer than n
2 of them.

2. We calculate the probability that G has no independent set of size
n
2k , and see that this is greater than 1

2 .

3. We observe that two events both of which have probability greater
than one half cannot be disjoint, so there exists some graph Ĝ
which has fewer than n

2 cycles of length at most k and has indepen-
dence number less than n

2k .

4. We finally observe that if we remove one vertex from each cycle of
Ĝ we get an induced subgraph H with girth at least k and indepen-
dence number at most n

2k , and so we can apply the inequality

χ(H) ≥ |V(H)|
α(H)

to get that the chromatic number of H is also at least k. So H is a
graph of the type we desired to show exists.

Exercises

Exercise 2. In this exercise, we will implement the proof sketch for
Theorem 9 – so take G as we did there, and then:

a) Letting Xi be the number of cycles of length i in G, show that

E [Xi] =
n!

(n − i)!
pi

2i
.

b) Now let X = ∑k
i=3 Xi, and use the above to show that

E [X] ≤ 1
2
(k − 2)(np)k.
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c) Use Markov’s inequality to show that P
(
X ≥ n

2
)
→ 0 with n, and

conclude that G a.a.s. has less than n
2 cycles of length at most k.

d) Modify the proof of Lemma 4 to see that

P
(

α(G) ≥ n
2k

)
→ 0 as n → ∞

whenever p ≥ 16k2

n for all sufficiently large n.

e) Conclude that for sufficiently large n,

P
(

X <
n
2

)
>

1
2

and P
(

α(G) <
n
2k

)
>

1
2

,

and thus the events cannot be disjoint, and there must exist a graph
Ĝ with both these properties.

f) Consider an induced subgraph H of Ĝ gotten by removing one ver-
tex from each cycle of length at most k in Ĝ. Show that |V(H)| ≥ n

2 ,
the girth of H is at least k, and α(H) ≤ α(Ĝ).

g) Use the inequality χ(H) ≥ |V(H)|
α(H)

and what you just saw in the
previous step to conclude that χ(H) ≥ k, yielding the theorem.
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