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Continuing our previous work on vertex colourings, we now consider
the related notion of edge colourings. Then we discuss the basic
notions of Ramsey theory.

Edge-colourings

We already saw the definition of an edge-colouring in the exercise
session, but let us restate it here as well:

Definition 1. Let G = (V, E) be a graph. A proper2 k-edge-colouring is a 2 Unlike for vertex colourings, we will
actually be interested in improper edge
colourings more often than proper ones,
so we choose the opposite convention of
including the word proper and omitting
the word improper for them.

function c : E → [k] such that no two edges which are incident to each
other (i.e. share an endpoint) are assigned the same colour. If we do
not have this restriction on incident edges, we call it just an (improper)
edge colouring.

The edge-chromatic number of G, denoted χ1(G),3 is the smallest 3 This is sometimes also called the
chromatic index of G. The 1 in the
notation indicates that edges are one-
dimensional – if we ever need to refer
to both the chromatic number and the
edge-chromatic number at the same
time, we may thus denote the chromatic
number by χ0(G), since vertices are
zero-dimensional. In some texts the
edge-chromatic number is denoted by
χ′(G), but χ and χ′ look way too similar
in LATEX and on a blackboard, so let us
avoid that notation.

integer k such that G has a proper k-edge-colouring.

Remark 2. We notice immediately that for a proper edge-colouring, the
colour classes are all matchings, just like how for a vertex colouring
the colour classes are all independent sets. In fact, of course, a proper
edge-colouring is a vertex colouring of the line graph, so this is just
an instance of the correspondence between matchings on G and
independent sets in L(G).

We can also see that if v is a vertex of maximum degree, its incident
edges must all have different colours, so we must have that χ1(G) ≥
∆.4 In fact this bound is attained for bipartite graphs. 4 We could also phrase this as that

these ∆ edges form a clique in the line
graph, so the chromatic number of
the line graph must be at least ∆, and
χ(L(G)) = χ1(G).

Theorem 3 (König’s line-colouring theorem, 1916). Every bipartite
graph G with maximum degree ∆ has edge-chromatic number χ1(G) = ∆.

Proof. We prove the result by induction on the number m = |E| of
edges. The base case of m = 0 is trivial.

So, let G = (V, E) be bipartite, with m edges and maximum degree
∆. Pick an arbitrary edge v ∼ w, and let G′ be the graph obtained
from G by deleting this edge.

Now G′ is a bipartite graph on fewer edges, and so by the induc-
tion hypothesis it can be properly edge-coloured with ∆(G′) ≤ ∆
colours, so we pick such a colouring.

Each of the vertices v and w are incident to at most ∆ − 1 edges in
G′, so there must exist a colour i not used by any edge incident to v,
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and likewise a colour j not incident to w. If i = j we can just colour
the edge v ∼ w in this colour, so assume that i ̸= j.

The rest of the argument essentially proceeds by considering the
Kempe chains of the colouring, and doing a Kempe change. Of
course, we defined Kempe chains only for vertex colourings, so we
need to consider edge-induced subgraphs instead of induced sub-
graphs.

So consider the graph G⟨i, j⟩ – the edge-induced subgraph of G
consisting only of the edges coloured with i or with j. If we could
show that v and w are in different connected components of this
graph, then we could swap the two colours i and j in the component
containing w, enabling us to colour the edge v ∼ w in colour i.

So suppose for contradiction that there were a path P from v to
w in G⟨i, j⟩. Then, since v is not incident to any edge of colour i by
assumption, the path P has to start with an edge coloured j. Likewise,
w is not incident to any edge coloured j, so P has to end with an edge
coloured i.

So if we just look at the sequence of colours of edges in P, it has to
look like

j i j i . . . j i j i

and so in particular we see that it must be of even length, since all the
is occur in even-numbered positions and the sequence ends on an i.

Therefore, the path P together with the edge v ∼ w forms a cycle
in G of odd length. This, however, is impossible, since a graph is
bipartite if and only if it contains no cycles of odd length.5 5 This, unfortunately, is not a statement

we have had occasion to prove in the
course. Fortunately, it makes for a very
nice exercise.

Exercise 1. Prove this characterization
of bipartite graphs.

So we have seen that the obvious bound is sharp for the bipartite
graphs. What other values can the edge-chromatic number take? It
turns out that the range of values is far more restricted than for vertex
colourings.

Theorem 4 (Vizing, 1964). For any graph G of maximum degree ∆, it holds
that χ1(G) ∈ {∆, ∆ + 1}. A graph such that χ1(G) = ∆ is said to be of
class one, and a graph such that χ1(G) = ∆ + 1 is said to be of class two.6 6 It turns out that there is no known

classification of which graphs are of
which class, but some partial results are
known.

Exercise 2. For which values of n is Kn
of class one and for which of class two?

Ramsey theory

Let us now dip our toes into the field of Ramsey theory. It is a large
research area with many questions to be posed, and we will give it a
shamefully short treatment. Let us start by stating the second most
elementary definition in the area.7 7 In the exercises, we saw the most basic

definition. Let’s make it mildly more
interesting here.Definition 5. For any integers r and k, the Ramsey number R(r, k) is

the smallest integer n such that every edge-colouring of Kn using
only the two colours red and blue contains a red Kr or a blue Kk.8 8 By “containing a monochromatic Kr”

we mean that for some colour i, the
edge-induced subgraph Kn⟨c−1(i)⟩
contains an r-clique.
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Equivalently, it is the smallest integer n such that any graph on n
vertices contains either an independent set of size k or has a clique of
size r.

Remark 6. Why are the two things we stated equivalent? Given any
graph G = (V, E) on n vertices, we can edge-colour the complete
graph Kn by colouring the edge i ∼ j red if i ∼ j ∈ E, and blue
otherwise. Then a red clique in the colouring is a clique in G, and a
blue clique is an independent set in G.

Of course, these definitions contain the hidden assumption that
these numbers actually exist. A priori there might be some r and k
such that there exist arbitrarily large graphs G with α(G) < k and
ω(G) < r. So let us prove that these numbers are indeed finite.

Lemma 7. For all m and n, it holds that

R(m, n) ≤ R(m − 1, n) + R(m, n − 1).

Proof. To keep the notation manageable, let us let s = R(m − 1, n)
and t = R(m, n − 1). Consider some edge-colouring of Ks+t, and pick
an arbitrary vertex v. By the pigeonhole principle, this v has either s
incident red edges or t incident blue edges.9 9 If it did not, the total number of

vertices in the Ks+t would be upper
bounded by

1 + (s − 1) + (t − 1) = s + t − 1

which is a contradiction.

So assume without loss of generality that it has s neighbours by
red edges,10 and let S be this set of neighbours. Then the induced

10 The argument if it instead had t
neighbours by blue edges is entirely the
same.

subgraph of just these neighbours is a Ks, which thus must contain
either a blue Kn or a red Km−1. In the first case, we are done, and in
the second case, the red Km−1 together with v forms a red Km, and we
are again done.

Corollary 8. For all m and n, R(m, n) is finite, and in particular,

R(m, n) ≤
(

m + n − 2
m − 1

)
.

Proof. It is easy to see that R(m, 1) = R(1, m) = 1, so the finiteness is
immediate by induction. To see the more explicit bound, we observe
that it is nearly as immediate that R(m, 2) = m and R(2, n) = n, and
then do a standard proof by induction, which we omit.11 11 It is just a version of the very basic

“prove this formula with binomial
coefficients” proofs that one sees when
first introduced to induction, there are
no fancy ideas here. Do work out the
details if you like.

Having seen the upper bound, let us now also establish a lower
bound on this quantity. To see a lower bound, it suffices to find a
single edge-colouring of a Kn which contains no monochromatic Kk.
This time, we will get to use the probabilistic method – the idea is just
to consider a random colouring, and show that the probability that it
has a monochromatic clique is less than one.12 12 This is one of the early proofs by

Erdős using the probabilistic method,
that really made its power clear.Theorem 9 (Erdős, 1947). If (n

k)2
1−(k

2) < 1, then R(k, k) > n. In

particular, R(k, k) ≥
⌊

2k/2
⌋

for all k ≥ 3.13 13 We only prove the first statement – the
second follows just by seeing that(⌊

2k/2⌋
k

)
21−(k

2) < 1,

which is not a calculation we want to
have to do.
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Proof. As advertised, we consider a random edge-colouring of a Kn –
we just assign each edge red or blue with equal probability.

So, for each set S ∈ ([n]k ), let RS be the event that Kn[S] is monochrome
red, and BS the event that it is monochrome blue. Clearly P (RS) =

P (BS) = 2−(k
2).

Then the event that the colouring has a monochrome Kk is just⋃
S∈([n]k )

RS ∪ BS,

and so we can use a union bound to see that

P

 ⋃
S∈([n]k )

RS ∪ BS

 ≤ ∑
S∈([n]k )

P (RS) + P (BS) =

(
n
k

)
21−(k

2)

which by assumption is less than one, and so there must exist an
outcome in which the event does not occur, which will be our exam-
ple.

Exercises
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