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We introduce the Rado graph, prove some of its more remarkable
properties, and show that it can be seen as t h e random graph on
infinitely many vertices.

We have already seen the definition of the Rado graph in the
exercise session, and we have mentioned when we introduced the
Erdős-Rényi graph that the Rado graph is what you will always get if
you sample an Erdős-Rényi graph on infinitely many vertices.

Let us start by restating definitions, and then we can jump into
proving things about this remarkable graph.

Definition 1. Let G = (V, E) be a finite or infinite graph. We say
that G is homogeneous if, for any two subsets A, B ⊆ V such that the
induced subgraphs G[A] and G[B] are isomorphic, the isomorphism
between them can be extended to an automorphism of the entire
graph.

Concretely, this means that if f : A → B is the isomorphism
between G[A] and G[B], there is an isomorphism g : V → V between
G and itself, such that f (a) = g(a) whenever a ∈ A.

Definition 2. The Rado graph is the unique2 countably infinite homo- 2 Up to isomorphism.

geneous graph G such that, for any finite graph H, H is isomorphic to
an induced subgraph of G.3 3 The part about being homogeneous is

necessary for uniqueness.

Exercise 1. Find a graph G on countably
many vertices that contains a copy
of each finite graph H, but is not
isomorphic to the Rado graph. In order
to prove that it is not isomorphic to the
Rado graph, give an explicit example of
two isomorphic subgraphs where you
cannot extend the isomorphism between
them to an automorphism.

This is a nice characterisation of the Rado graph,4 but it of course

4 If you knew some model theory,
you might recognize this definition
as stating that the Rado graph is the
Fraïssé limit of the class of finite graphs.
If you do not, those words mean
nothing to you. (And you should
take a class on model theory at some
point – it is very cool stuff, even if it is
a bit outside the usual main track of a
mathematics education.)

does not actually show that this graph exists. We will prove that a
bit later, but to do so, it is easier to characterise the Rado graph by a
different property.

Definition 3. A graph G = (V, E), finite or infinite, is k-saturated if, for
any two subsets U, W ⊆ V, each of size at most k, there exists a vertex
v ∈ V such that v ∼ u ∈ E for every u ∈ U, and v ∼ w ̸∈ E for every
w ∈ W.

Our goal is to show the following theorem, which gives us our
desired different characterization of the Rado graph, and gives us a
proof of its uniqueness.5

5 Proving its existence will come later.

Theorem 4. The following two properties of a graph are equivalent:

1. G is homogeneous and contains a copy of every finite graph.

2. G is k-saturated for every k ∈ N.
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In addition, any two countable graphs that both have these properties are
isomorphic.

We will divide this statement into three lemmas.

Lemma 5. If G = (V, E) is a k-saturated graph, it contains a copy of H for
any graph H on at most k vertices.

Proof. We prove this by induction on the number n of vertices of H.
The base case of n = 1 is trivial.6 6 Well, it requires us to know that G is

not the “empty graph” (∅, ∅).

Exercise 2. Prove that a k-saturated
graph must always have at least k
vertices. If you want, try thinking about
if you can find a sharper lower bound
on the number of vertices than this.

So suppose we are given some graph H = (Ṽ, Ẽ), and pick an
arbitrary vertex v ∈ Ṽ. By induction, there is a copy of H[Ṽ \ v] in G –
let f : Ṽ → V be the isomorphism.

So let U = N(v) and W = Ṽ \ N(v). By k-saturatedness, there is
a vertex w ∈ V adjacent to every vertex in f (U) but to none of the
vertices in f (W). Then, however, we can extend our isomorphism f
by just defining f (v) = w. So we have found a copy of all of H in
G.

So this gives us half of the implication from property two to prop-
erty one. The other half will require us to actually think about infinite
graphs a little bit, or at least do a bit of induction.

Lemma 6. If a graph G = (V, E) on countably many vertices is k-saturated
for every k ∈ N, then it is homogeneous.

Proof. In order to prove this, it suffices to prove the following state-
ment:

Suppose A and B are two subsets of V such that G[A] and G[B] are
isomorphic, via an isomorphism f : A → B. Then for each a ∈ V \ A
there exists b ∈ V \ B such that f extends to an isomorphism of
G[A ∪ {a}] and G[B ∪ {b}] by letting f (a) = b, and similarly for each
b ∈ V \ B there exists an a ∈ V \ A so that we can likewise extend f .

To prove the lemma using this statement, we use the so-called
“back-and-forth” method, which is seen all over model theory. So
suppose we are given two sets of vertices A0 and B0 such that G[A0]

and G[B0] are isomorphic. We then order the vertices of G as v1 <

v2 < . . .,7 and we inductively construct larger and larger isomor- 7 Here we are of course using our
assumption that G is countable. The
argument should still work for higher
cardinalities if you assume it is κ-
saturated for every cardinal up to the
size of your vertex set, you just need
different notation for how you order the
vertices in the argument.

phisms as follows:

1. Pick the first vertex a for which f is not yet defined, and use our
statement to find a b to extend f to this a.

2. Then we pick the first vertex b which is not in the image of f , and
find an a so that we can extend f to hit this vertex.

This inductively defines an isomorphism between subsets of every
finite size – and if we take a union of all of these, we get the desired
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automorphism. The first step of this process ensures that the auto-
morphism is defined on all vertices, and the second step ensures that
every vertex is in its image, so it really is bijective.8 8 Both of these steps are genuinely

needed – if we didn’t have the second
step, we might not create a surjection.
Imagine the vertices of G are just the
integers – the second step is needed to
ensure that the map we’re creating isn’t
accidentally a bijection between Z and
2Z. Infinities can behave in ways we
don’t immediately expect based on how
finite sets act.

So suppose we are given two such subsets A and B and a vertex
a ∈ V \ A. Let U = f (N(a) ∩ A) and W = f (A \ N(a)). Then, by
saturation of G, there exists a b ∈ V which is adjacent to every vertex
in U and no vertex in W.

So it is clear that defining f (a) = b extends the isomorphism, since
b is adjacent to precisely those vertices in f (A) that a was adjacent to
in A.

An entirely analogous argument, letting instead U = f−1 (N(b) ∩ B)
and W = f−1 (B \ N(b)), yields the second half of the statement.

Lemma 7. If a graph G = (V, E) is homogeneous and contains a copy of
every graph on at most 2k + 1 vertices, then it is k-saturated.

Proof. Suppose we are given two disjoint sets U, W ⊆ V of size at
most k. We need to find a vertex adjacent to everything in U and
nothing in W.

So construct a graph H by taking the graph G[U ∪ W] and adding
another vertex v to it, with an edge to everything in U and nothing
in W. Let the copies of U and W in H be denoted Ũ and W̃, respec-
tively.

Clearly, H is a graph on at most 2k + 1 vertices, and so there exists
a copy of it somewhere in G – in a slight abuse of notation, we can
call the copy H and its vertices {Ũ, W̃, w} as well.9 9 This makes the notation a lot simpler

for us – otherwise, we would have to
introduce a letter for the isomorphism
between H and the copy of H in G,
and start writing things like f (Ũ)
everywhere.

Now, by construction, G[Ũ ∪ W̃] and G[U ∪ W] are isomorphic,
and so since G is homogeneous the isomorphism between them
extends to an automorphism f of G. It is clear that we must have that
f (Ũ) = U and f (W̃) = W.

So consider the vertex f (v) – since v has an edge to every vertex of
Ũ, f (v) must have an edge to every vertex of f (Ũ) = U, and likewise
for the non-edges between v and W̃. So f (v) is the vertex we were
looking for.

So now we have showed that the two sets of properties are indeed
equivalent – it remains to show that there is only one graph up to
isomorphism that has these properties.

Lemma 8. Suppose G = (V, E) and G′ = (V′, E′) are two graphs that both
have the properties stated in Theorem 4, that is, they are both k-saturated for
every k. Then they are isomorphic.

Proof sketch. Just like in the proof of Lemma 6, we prove this by induc-
tively by the back-and-forth method, starting from the isomorphism
between a single-vertex subgraph in G and one in G′.
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The argument for extending the isomorphisms is almost exactly
the same as in the proof of Lemma 6, using the saturation to find the
next vertex to extend it to, so we leave writing up the details as an
exercise.10 10

Exercise 3. Do this.

Existence of the Rado graph

So far, we have proven that a bunch of properties of the Rado graph
are equivalent, and we have shown that there can only exist one Rado
graph up to isomorphism. However, we still haven’t actually shown
that it exists.

To show that it exists, we will begin by showing that it is indeed
t h e random graph, that is, that if you pick an Erdős-Rényi graph on
infinitely many edges with any edge probability, the thing you get
will be isomorphic to the Rado graph.

Theorem 9. Suppose G = (N, E) is a random graph on countably many
vertices, where each edge is present with probability p ∈ (0, 1), indepen-
dently of all other edges. Then it almost surely holds that G is k-saturated for
every k, and thus isomorphic to the Rado graph.

In order to show this, we will need two results from probability
theory, one very easy and one that is a classical lemma.

Remark 10. Suppose {A1, A2, . . .} is a countable set of events, such
that P (Ai) = 1 for all i. Then P (

⋂∞
i=1 Ai) = 1 as well.

Proof. A union bound yields that

P

(
∞⋂

i=1

Ai

)
= 1 − P

(
∞⋃

i=1

Ac
i

)
≥ 1 −

∞

∑
i=1

P (Ac
i ) = 1.

The second result we need is a result relating the probabilities of
individual events to the probability of infinitely many of the events
occurring.11 11 Interestingly, there is a typo in last

year’s lecture notes, calling it the
“Borell-Cantelli lemma” – normally, this
would be unremarkable, but there is in
fact a different, Swedish, mathematician
named Borell who also worked in
probability. So for once an extra ‘l’
actually could confuse someone!

Lemma 11 (Borel-Cantelli). Let A1, A2, . . . be a sequence of events, and let
A be the event that infinitely many of these events occur.12

12 Formally, the event that infinitely
many Ai occur is the event lim supi Ai ,
but we shall not need to worry about
this kind of technical detail.

1. If
∞

∑
i=1

P (Ai) < ∞

then P (A) = 0, that is, almost surely only finitely many of the events
occur.
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2. If instead
∞

∑
i=1

P (Ai) = ∞

and additionally the events A1, A2, . . . are independent, then P (A) = 1.

Proof of Theorem 9. By Remark 10 it suffices to show for each k that G
is k-saturated with probability one in order to show that it is almost
surely k-saturated for every k.13 13 That is, the two orders of quantifiers

are in fact equivalent, even though a
priori one looks stronger than the other.

For each pair of sets U, W ∈ (N
k ), and each v ∈ N \ (U ∪ W), let

AU,W,v be the event that v has an edge to every vertex in U and none
to any vertex of W. Clearly, then, the event that G is k-saturated is
precisely the event ⋂

U,W∈(N
k )

⋃
v∈N\{U∪W}

AU,W,v.

Now we can apply our remark once again – there are only count-
ably many pairs of k-element subsets of N, so if we can show that for
every choice of U and W,

P

 ⋃
v∈N\{U∪W}

AU,W,v

 = 1,

then the result will follow.
Now, it is easy to see that P (AU,W,v) = pk(1 − p)k, since edges ap-

pear independently with probability p – and in fact this independence
means that these events are independent for different v. So we get
that

∑
v∈N\(U∪W)

P (AU,W,v) = ∑
v∈N\(U∪W)

pk(1 − p)k = ∞,

and so the conditions of the second half of the Borel-Cantelli lemma
are satisfied, and so in fact the event AU,W,v occurs for infinitely many
v, which is certainly enough to yield our theorem.

Fractal properties of the Rado graph

Remark 12. We saw in the proof of Theorem 9 that the Rado graph in
fact has an even stronger property than just k-saturation: There exist
infinitely many different choices for the vertex v whose existence we
are guaranteed by k-saturation.

This property lets us show some strange fractal-like properties of
the Rado graph.

Corollary 13. If you add or remove any finite number of vertices or edges
from the Rado graph, the resulting graph is still isomorphic to the Rado
graph.
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Proof. For any given pair of sets U and W, removing or adding
finitely many vertices and edges can only break at most finitely many
choices for a vertex v connected to all of U and none of W. Therefore,
since we have seen there are infinitely many choices, some such choice
must remain.

In fact, the Rado graph exhibits a kind of self-similarity.

Theorem 14. Suppose R = (V, E) is the Rado graph, and V = A1 ∪ A2 ∪
. . . ∪ Ak is a partitioning of its vertices into k disjoint sets. Then at least one
of the graphs R[A1], R[A2], . . . , R[Ak] is isomorphic to R.

Proof. Suppose, for contradiction, that the theorem fails. Then, for
each i ∈ [k], there exists sets Ui, Wi ⊆ Ai such that no vertex v ∈ Xi

has an edge to everything in Ui and nothing in Wi.
Now consider the sets

U = U1 ∪ U2 ∪ . . . ∪ Uk, W = W1 ∪ W2 ∪ . . . ∪ Wk.

By saturation, there has to be some vertex v ∈ V connected to ev-
erything in U and nothing in W. However, we must have v ∈ Xi for
some i, and so this v would in fact in particular be connected to every-
thing in Ui and nothing in Wi, which gives our contradiction.

In fact, the Rado graph is the only non-trivial countable graph with
this property, though we omit the proof of this.

Proposition 15. The only countable graphs with the self-similarity property
of the above theorem are the Rado graph, the graph on countably many
vertices with no edges, and the complete graph on countably many vertices.

Remark 16. The Rado graph is isomorphic to its complement graph.

Explicit constructions of the Rado graph

So far, we have only seen the existence of the Rado graph proven by a
probabilistic existence argument, which is a bit unsatisfying. It would
be nicer if we had an explicit construction of it.

Thus, in this section, we give two constructions of it, one which is
sensible and one which may shake your faith in the foundations of
mathematics. We start with the latter.

Proposition 17. Let M be a countable model of set theory,14 and create a 14 That is, M is a countable set equipped
with a relation called ∈, such that all the
axioms of Zermelo-Fraenkel set theory
are satisfied by this structure.

That such a thing exists, assuming
the axioms are consistent, follows from
the downward Löwenheim-Skolem
theorem, and is indeed very shocking.

graph M∗ = (M, E) by declaring that there is an edge between x, y ∈ M
whenever x ∈ y or y ∈ x. Then this M∗ is isomorphic to the Rado graph.

Proof. Let U = {u1, . . . , uk} and W = {w1, . . . , wk} be two sets of
vertices of M∗. Let

v = {u1, . . . , uk, {w1, . . . , wk}}.
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We claim that this v has an edge to everything in U and to nothing
in W. By construction, ui ∈ v for every i, so we only need to see that
wi ̸∈ v and v ̸∈ wi for every i.

Now, if wi ∈ v we would have either wi = uj for some j, contrary
to assumption, or wi = {w1, . . . , wk}, so in particular wi ∈ wi, which
contradicts the axiom of foundation.

Likewise, if v ∈ wi, we would have wi ∈ {w1, . . . , wk} ∈ v ∈ wi,
which is again a contradiction – no set is a member of itself.

This was technically an explicit construction, but it still doesn’t feel
like we’ve concretely seen it constructed. So let us end this absurd
lecture on a nice and concrete note:

Proposition 18. Let G = (N, E) be the graph where there is an edge
n ∼ m if the nth digit of the binary expansion of m is a one, or the mth digit
of the binary expansion of n is a one. Then this G is isomorphic to the Rado
graph.15 15 We leave the proof of this as an

exercise – you can prove this by just
explicitly writing a formula for the
vertex v in terms of U and W.

Exercise 4. Prove this proposition.

Exercises
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