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We discuss some basic notions of extremal graph theory, and give
some nice proofs of Turán’s theorem and related ideas. Then we
introduce the Szémeredi regularity lemma, and use it to prove the
triangle removal lemma, which we can use to prove Roth’s theorem on
arithmetic progressions of length three.

Turán’s theorem

As usual, we start by repeating a definition from the exercise session.

Definition 1. Given any graph H, we say that a graph G is H-free if it
has no subgraph isomorphic to H. We say that it is maximal H-free if
adding any edge to it would create a subgraph isomorphic to H, and
we say that is is maximum H-free (or extremal among H-free graphs) if
additionally no other H-free graph has more edges than G.

For each integer n, we define the extremal function for H, denoted
ex(n; H), to be the number of edges of a maximum H-free graph on n
vertices.

In the exercises, you were asked to investigate what an extermal
r-clique-free graph might look like. The answer to this problem is a
famous theorem due to Turán.2 2 The special case of triangle-free graphs

is due to Mantel.
Definition 2. The Turán graph T(n, r) is a complete multipartite graph
divided into r parts, with n vertices divided as equally as possible
between the parts.3 3 Concretely, if n = qr + s for natural

numbers q and s < r, it has s parts of
size q + 1 and r − s parts of size q.

This graph has (
1 − 1

r
+ o(1)

)
n2

2

edges.

Theorem 3 (Turán, 1941). It holds for every r that

ex(n; Kr+1) ≤
(

1 − 1
r

)
n2

2
,

and in particular the Turán graphs are the extremal (r + 1)-clique-free
graphs.

We will see two different proofs of this theorem. The first will only
show the upper bound, not the extremality of the Turán graphs, but
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the second will prove that the Turán graphs are extremal in order to
show the bound.

We start with one that uses a result we have seen before, the Caro-
Wei result about independent sets.4 4 Which was originally invented to be

used in this proof of Turán’s theorem.
Proof of Theorem 3. We begin by noting that a clique in a graph is
precisely an independent set in its complement graph. Now dGc(v) =
n − 1 − dG(v), so by Caro-Wei we get that

ω(G) = α (Gc) ≥ ∑
v∈V

1
dGc(v) + 1

= ∑
v∈V

1
n − dv

.

Next, we are going to use the Cauchy-Schwarz inequality, which
states that5 for any (a1, a2, . . . , an), (b1, b2, . . . , bn) ∈ Rn, we have 5 Or in the more compact linear algebra

formulation,

|⟨a, b⟩| ≤ ∥a∥ ∥b∥ ,

but it’s more convenient for us to just
write out what it means termwise.

(
n

∑
i=1

aibi

)2

≤
(

n

∑
i=1

a2
i

)(
n

∑
i=1

b2
i

)
.

So let av =
√

n − dv and bv = 1√
n−dv

, so that avbv = 1 for all v, and
Cauchy-Schwarz states that

n2 ≤
(

∑
v∈V

n − dv

)(
∑

v∈V

1
n − dv

)

≤ ω(G)

(
∑

v∈V
n − dv

)
= ω(G)

(
n2 − 2|E|

)
,

where in the first step we used our bound on ω(G) we have just
shown, and in the second the fact that ∑v dv = 2|E| that we showed
near the very beginning of the course.

So if we assume that ω(G) ≤ r, we get that

n2 ≤ r
(

n2 − 2|E|
)

,

which if you solve for |E| becomes precisely the inequality of Turán’s
theorem.

The second proof we present of this theorem is due to Erdős.

Proof of Theorem 3. Our proof will proceed by showing that we can al-
ways increase the edge-count of a graph, while retaining its r-clique-
freeness, in a way that makes it closer to a complete multipartite
graph. This will show that the extremal graph must be complete
multipartite, and thus in particular must be the Turán graphs.6 6 That this is so follows from the follow-

ing fact:

Exercise 1. Show that the Turán graphs
are the r-partite graphs on n vertices
with the most edges.

Let G = (V, E) be some r-clique-free graph on n vertices, and let v
be a vertex of maximum degree in G. Let S = N(v) and T = V \ N(v).
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Figure 1: A figure of the construction
of H from G in the Erdős proof of
Theorem 3. The black edges are edges
that are kept, grey edges are removed,
and red edges are added. The vertex v
and sets S and T are labelled in blue.

We note that since G is r-clique-free and v is adjacent to every vertex
of S, G[S] must in fact be (r − 1)-clique-free.

Now we construct a graph H by taking G, deleting every edge in-
side of T, and adding every edge between S and T. This construction
is illustrated in Figure 1.

Since G[S] is (r − 1)-clique-free, adding a new neighbour to all of
them cannot create an r-clique, so H is still r-clique-free. It remains to
see that it has at least as many edges as G.

So consider the degree of any vertex w. If w = v, its degree didn’t
change, if w ∈ S, its degree can only have increased, and if w ∈ T
its new degree is dv, which by assumption was maximum, so it again
has not decreased. So since the degree of every vertex has increased
or remained unchanged, we conclude that |E(H)| ≥ |E(G)|.

So we conclude that the maximal r-clique-free graphs must be ones
which are unchanged by this process, and a moment’s thought reveals
that these must be precisely the complete multipartite graphs.7 7

Exercise 2. Think for a moment.We can actually employ the idea in this proof to answer a related
question: If a triangle-free graph has very nearly ex(n; K3) edges, will
it be very close to being bipartite?8 Results of this kind are called 8 I first saw this proof in a summer

school in Prague in 2022, and when the
lecturer there introduced this proof he
said that it was extremely nice, and if
we ever taught a course on graph theory,
we had to include it. So now, a year and
a half later, I am teaching a course on
graph theory, and so I dug it up, found
it is indeed very nice, and included it.

stability results, since they answer questions of the type “if you nudge
the extremal object a bit, will it still look similar”.

Theorem 4 (Simonovits 1968, Füredi 2015). Every triangle free graph
with ex(n, K3)− t edges may be made bipartite by removing t edges.

Proof. Take G = (V, E) to be such a graph, and as before, pick v ∈ V
to be a vertex of maximum degree. We set

A = V \ N(v), B = N(v)

and notice that due to triangle-freeness, there can be no edges inter-
nal to B.
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Let us consider the sum of the degrees of the vertices in A. On the
one hand, we can compute

∑
w∈A

dw = 2e(A) + e(A, B)

= e(A) + (e(A) + e(A, B) + e(B)) = e(A) + e(G)

= ex(n; K3)− t + e(A).

On the other hand, we have since dv is maximum, that

∑
w∈A

dw ≤ |A|dv = (n − dv)dv ≤ ex(n; K3).

Here, the final inequality follows from that (n − dv)dv is precisely the
number of edges of a complete bipartite graph with parts of size dv

and n − dv, which is certainly triangle free on n vertices and thus has
at most ex(n; K3) edges.

So we have seen that ex(n; K3) ≥ ex(n; K3)− t + e(A), so e(A) ≤ t.
So if we remove these at most t edges, there will be no edges internal
to either A or B, and so G will be bipartite.

Szemerédi’s regularity lemma and the triangle removal lemma

As we explored in the exercises, the Szemerédi regularity lemma tells
us that all large enough graphs look roughly like a random multi-
partite graph, so their structure can be summarized by a “blueprint”
graph. Let us now see how we can use this result to see a sort of con-
verse result to our previous result about nearly maximum triangle-free
graphs.

In particular, the result we are going to show states that if you need
to remove a large amount of edges to destroy every triangle in the
graph, then the graph must in fact have contained a lot of triangles.

Theorem 5 (Erdős-Simonovits, 1983). For every ε > 0 there is a δ > 0
such that if G is an n-vertex graph such that at least εn2 edges have to be
removed from G in order to make it triangle-free, then G has at least δn3

triangles.

Since the proof of this uses Szemerédi regularity, let us restate
that theorem here as well, along with a crucial definition used in its
statement:

Definition 6. Let G = (V, E) be a graph on n vertices, and A and B
two disjoint subsets of V. For any ε > 0, we say that the pair (A, B)
is ε-regular if it holds for all X ⊆ A, Y ⊆ B with |X| ≥ ε|A| and
|Y| ≥ ε|B| that

|d(X, Y)− d(A, B)| ≤ ε.



lecture 18: extremal graphs and szemerédi’s regularity lemma · 1ma170 5

Theorem 7 (Szemerédi’s regularity lemma). For every ε > 0 and m ∈ N

there exists an M ∈ N such that for every graph G = (V, E) on at least M
vertices and every δ ∈ [0, 1], there exists

a) a blueprint R = ([k], ER, w) whose minimum weight is at least δ,

b) a partition V = V0 ⨿ V1 ⨿ . . . ⨿ Vk,

c) and a spanning subgraph G′ of G,

such that

1. m ≤ k ≤ M,

2. 0 ≤ |V0| ≤ ε|V|,9 9 So notice in particular that V0 may be
empty.

3. |V1| = |V2| = . . . = |Vk|,

4. for every v ∈ V
dG′(v) > dG(v)− (δ + ϵ)|V|,

where dG′ and dG denote degrees in G′ and G respectively,

5. the graph G′′ = G′[V \ V0] is multipartite with the sets Vi as parts,10 10 Which concretely just means that for
every i = 1, 2, . . . , k, there are no edges
internal to Vi in G′, which you could
alternatively phrase as that these sets
are independent in G′.

6. and all of the pairs (Vi, Vj) for 1 ≤ i, j ≤ k are ε-regular, and their density
is w(i ∼ j) if i ∼ j is an edge of R, and otherwise there are no edges
between them.

Remark 8. The graph G′′ will be multipartite, and have at most δ+3ε
2 n2

edges fewer than the graph G we started with.11 11 Showing this was one of the exercises
in the exercise session on this topic.

Let us now give an idea of a proof of the triangle removal lemma –
except we avoid the details of what the exact values of our εs and δs
will be. We don’t need to know that, and it would be painful to keep
track of in a lecture.12 12 If you wish, try to flesh out the proof

with all those details – or just use
Google to find a fully detailed proof.Proof sketch of Theorem 5. Suppose G is a graph satisfying the hypothe-

ses of the theorem, that is, it has n vertices and you need to remove at
least εn2 edges to make it triangle-free.

Then we can pick some ε0 and δ such that we, when we insert
those into the regularity lemma, get a blueprint R and a multipartite
subgraph G′′ of G which has had less than ϵn2 edges removed.

Then, by our hypothesis, this G′′ must contain a triangle, and since
it is multipartite the vertices of this triangle must belong to three
different parts Vi, Vj, Vk.

Thus there has to be a triangle {i, j, k} in the blueprint R, and the
weight of each of the edges of this triangle has to be at least δ. The
intuition now is that G′′ looks like a random multipartite graph with



lecture 18: extremal graphs and szemerédi’s regularity lemma · 1ma170 6

blueprint R, and in such a random multipartite graph we would
expect to see

w(i ∼ j)w(i ∼ k)w(k ∼ j)n3 ≥ δ3n3

triangles between the three parts.
Now, we can of course not reason like that, because the graph G

is not actually random – however, all the three pairs (Vi, Vj), (Vi, Vk)

and (Vj, Vk) are ε0-regular, which essentially means that they can’t
behave too differently from the behaviour of a random graph. So
applying the regularity property a few times,13 we see that there is 13 In particular, the following lemma

comes in handy:

Lemma 9. Let (A, B) be an ε-regular pair
with density d in a graph G. For any a ∈ A
and Y ⊆ B, let

dY(a) = dG[Y∪{v}](a),

that is, dY(v) is the number of neighbours
of a in Y.

It holds that, if |Y| ≥ ε|B|, we have

|{a ∈ A | dY(a) < (d − ε)|Y|}| < ε|A|.

That is, for any large enough subset Y of
B, nearly all vertices of A have the expected
number of neighbours in Y.

indeed a δ′ such that G′′, and thus also G, has at least δ′n3 triangles.

Roth’s theorem

For what may be the first time in this course, let us apply graph
theory to prove a result about some other part of mathematics. Par-
ticularly, we are going to look at part of the result that Szémeredi
originally proved the regularity lemma for, namely arithmetic pro-
gressions in positive-density sets.

The original theorem he proved is the following:14

14 His proof of this result is notoriously
long and difficult to understand, mo-
tivating other proofs using methods
from different areas of mathematics
of the same result, most famously by
Furstenberg using ergodic theory, and
Gowers, using Fourier analysis.

Theorem 10 (Szemerédi, 1975). For every k ∈ N and α > 0, thre exists
some n0 ∈ N such that if n ≥ n0 and A ⊆ [n] with |A| ≥ αn, then A
contains a k-term arithmetic progression.15

15 Recall that a k-term arithmetic
progression is a set of integers
{a, a + d, a + 2d, . . . , a + (k − 1)d}.

The theorem we shall be proving is just the case of k = 3, which is
known as Roth’s theorem, and was originally proved using techniques
from analytic number theory.

Theorem 11 (Roth, 1953). For every α > 0 there is some n0 such that
if n ≥ n0 and A ⊆ [n] with |A| ≥ αn, then A contains a three-term
arithmetic progression.

Proof. Suppose we are given some set A ⊆ [n] with |A| = αn. We
create a tripartite graph G on the vertices V1 ⨿ V2 ⨿ V3, where we let

V1 = {(i, 1) | i ∈ [n]} , V2 = {(i, 2) | i ∈ [2n]} , V3 = {(i, 3) | i ∈ [3n]} ,

so there are 6n vertices in total. We add edges by declaring that for
every x ∈ [n] and a ∈ A, the triangle {(x, 1), (x + a, 2), (x + 2a, 3)} is
present.

Now we observe that all these triangles we have added are edge-
disjoint, so we need to remove one edge from each triangle to destroy
them all – and there are a total of 3n|A| = 3αn2 edges. So by the
triangle removal lemma, there are at least δn3 triangles in G, for some
δ depending only on α.
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We now claim that these triangles in G correspond to three-term
arithmetic progressions in A. So suppose we have a triangle on the
vertices (x, 1), (y, 2) and (z, 3). Since (x, 1) ∼ (y, 2) is an edge, we
must have y = x + a0 for some a0 ∈ A. Similarly, since (x, 1) ∼ (z, 3),
we must have z = x + 2a1 for some a1 ∈ A, and likewise we must
have z = y + a2 for some a2 ∈ A

If we do some elementary algebra on this, what we have seen is
that

a2 − a1 = a1 − a0

so if a1 ̸= a0, the three numbers a0, a1, a2 will form a three-term
arithmetic progression in A with common difference a1 − a0.16 16 This may of course be negative – if

you prefer your arithmetic sequences
not to have negative difference, the
sequence a2, a1, a0 may be more to your
liking.

The only case in which this triangle did not correspond to a three-
term arithmetic progression is when a0 = a1. However, these trian-
gles are precisely the edge-disjoint triangles we started with, and we
know there are only 4αn2 < δn3 of those, so there has to be at least
one triangle that did arise from an arithmetic progression.17 17 In fact, this of course shows that there

are Ω(n3) such triangles, which a bit
of thought will reveal correspond to
Ω(n2) arithmetic progressions – so we
could have written a much stronger
conclusion to our theorem: It not only
has one arithmetic progression, it has
quite many.

Exercises
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