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We formalize the ideas we started with in the first exercise session,
giving a proof of Euler’s result on Eulerian circuits. We then make
some more definitions about simple graphs and subgraphs, and we
state some elementary results about these notions.

Basic definitions, multigraphs

The very first definition we give in this course will actually be of a
multigraph, not the simple graphs that were our first example.2

2 These are of course a type of graph, so
we will often just write or say “graph”
when it is clear from context what type
of graph we are referring to, or what we
are saying applies to any type of graph.Definition 1. A multigraph G is a tuple (V, E), consisting of a set V of

vertices, and a multiset3 E of edges. Each edge is a multiset containing 3 A multiset is just like a set, except an
element may occur more than once.two vertices from V, called its endpoints. We say two vertices are

adjacent if there is an edge between them, and a vertex v is incident to
an edge e if v ∈ e.

If the same edge occurs more than once in E, we say that these
edges are parallel. If the two endpoints of an edge are equal, we call it
a loop.

Unless explicitly stated, we always assume that both V and E are
finite sets. Otherwise, we say the graph is infinite.4 4 It may sometimes be the case that our

proofs work without modification also
for infinite graphs – thinking about
whether they do may be a useful thing
to do when reading the proofs, to
understand them better.

Next, continuing to formalize the things we learned thinking about
the bridges of Königsberg, let us define what a walk is.

Definition 2. Let G = (V, E) be a multigraph. A walk of length k is
a sequence of k + 1 vertices v0v1v2 . . . vk and a sequence of k edges5 5 So the length of a walk is the number

of edges, not the number of vertices.e1e2 . . . ek such that ei = {vi−1, vi} for all i. A trail is a walk that uses
no edge twice, and a path is a walk that uses no vertex twice. A circuit
is a trail where the first and last vertices coincide, and a cycle is a
circuit where these are the only vertices that coincide.

We have one example of a walk in Figure 1 – it does not repeat any
of the edges, so it is a trail, but it repeats the central vertex we have
labelled with both v2 and v6, so it is not a path.

Having introduced walks, we can give a definition of another very
natural property, namely connectedness.6 6 You’ve probably already seen the

notion of connectedness of a subset of
R2 in a calculus course, and if you’ve
looked at other geometry it appears
there as well. This is the same notion,
just discretized.

Definition 3. We say that a graph G is connected if there is, for any
two vertices u, v ∈ G, a walk from u to v. We say that two vertices in
a graph are connected to each other if there is a walk between them.
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Figure 1: A walk in a graph, which is a
trail but not a path.

Notice that there is a trivial “lazy” walk connecting every vertex to
itself, so the relation of connectedness is an equivalence relation. The
equivalence classes of this equivalence relation are called the connected
components of the graph.7 7 We could equivalently have defined the

connected components as the maximal
connected subgraphs of the graph –
when we get to a formal definition of
subgraph, think about why this is true.

Eulerian circuits, the Bridges of Königsberg

Let us now define the thing we were studying when we thought
about the bridges of Königsberg.

Definition 4. An Eulerian trail is a trail that uses every edge in the
graph exactly once – if additionally it has the same starting and
ending vertex, we call it an Eulerian circuit. If there is an Eulerian
circuit in a graph, we call the graph Eulerian.

The problem we were studying was thus to find a simple condition
for when a multigraph is Eulerian. The condition we found8 involved 8 Hopefully.

the number of edges incident to a vertex, so let us also give this
notion a name.

Definition 5. The degree of a vertex v, denoted dv, is the number of
edges a vertex is incident to, with loops counted twice.

We now have all the language we need to formally state and prove
the theorem that started graph theory all those nearly three hundred
years ago.

Theorem 6 (Euler (1736)). A finite connected multigraph is Eulerian if and
only if all its vertices have even degree.

Proof. Let us begin with the easy direction of this statement: That a
graph which is Eulerian will have only even-degree vertices. To see
this, note that the Eulerian circuit gives us a way to pair up the edges
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incident to any vertex – the path enters through one edge and leaves
through another, so we pair those up. Since the circuit uses every
edge, there can’t be any odd edge left over in this pairing, and so the
degree of the vertex can’t be odd.

So, for the harder direction, we will prove the result by induction
on the number of edges.9 The base case is n = 0, where the graph 9 This is a different proof than the one

given in the lecture notes from last year.
The reason for changing the proof is
that I couldn’t understand what was
going on in the previous proof. Feel
free to look at the other proof if this one
doesn’t make sense to you – maybe it
will.

must just be a single vertex. That this is Eulerian is trivial – the lazy
path that does nothing uses every edge in the graph, since the graph
has no edges.

Now, let G = (V, E) be a finite connected multigraph with only
even vertex degrees, with n ≥ 1 edges. Pick an arbitrary vertex v,
then pick an arbitrary edge e = {v, w} going out from v.10 Then pick 10 This edge is allowed to be a loop –

think about what happens in that case.another edge going out from w, making sure it hasn’t already been
used in our path, and so on, until you have returned to v. Let W be
the set of edges we used in this walk.

That we will always be able to pick an unused edge to continue
walking along follows from our assumption that the degrees of ver-
tices are even – if we were able to use an edge to get to a vertex we
must also be able to pick one to leave it, since we always use up edges
in pairs.

Figure 2: A graph G = (V, E) with the
path W highlighted in red, and the two
connected components C1 and C2 of
H = (V, E \ W) indicated.

Now consider the graph H = (V, E \ W), that is, G with all the
edges we used in our walk removed. Let C1, C2, . . . , Ck be its con-
nected components, as is illustrated in Figure 2. Now, each of these
components necessarily has fewer than n edges, and is of course
trivially connected, so by our induction hypothesis each contains an
Eulerian circuit.

The idea now is to glue together our circuit W with the circuits on
the Ci to get an Eulerian circuit on the entire graph. To do this, what
we need is that each Ci contains at least one vertex that is incident to
an edge in W.

To see this,11 pick a connected component Ci. If v ∈ Ci, we are 11 This is the hardest piece of the proof
– at least in the sense that it is hard to
write in a way that is both rigorous and
understandable. Once it “clicks” why
this should be true, it is hopefully less
hard. The figure, and the lecture, might
help.
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done, so assume it is not. We now pick some arbitrary vertex w in Ci

– since G is by assumption connected, there exists a walk connecting
w to v. Since v is not in Ci, this walk must at some point leave Ci – so
consider the edge it leaves Ci by, say, e = {a, b}, walking from a ∈ Ci

to b ̸∈ Ci. This edge must in fact be in W, because if it weren’t, it’d
be an edge of H, and a is in Ci – and thus b would also be in Ci, by
definition of connected component, and this edge wouldn’t be leaving
Ci at all. So the vertex a must both be in Ci and be incident to an edge
of W.

Figure 3: A graph G = (V, E) with the
path W highlighted in red, and the two
connected components C1 and C2 of
H = (V, E \ W) indicated. Additionally,
the Eulerian circuits on the connected
components and W are drawn in blue,
and their gluing together in dashed blue
lines.

So, for each Ci, let ai be a vertex in Ci incident to an edge in W. We
construct our Eulerian circuit on G as follows: Start at v and walk
along W. Whenever you encounter an ai, instead follow the Eulerian
circuit in Ci all the way around until you return to this ai, and then
proceed along W. That this will produce an Eulerian circuit on the
entire graph should be clear, as is illustrated in Figure 3.

If we didn’t require the trail to start and end at the same vertex, we
could get away with having the start- and endpoint have odd degree.
Let us state this as a corollary:

Corollary 7. A finite connected graph admits an Eulerian trail if and only if
either 0 or 2 of its vertices have odd degree.

Proof. If all vertices have even degree, this is just the theorem we just
proved. If there are two vertices of odd degree, connect them with a
new edge, so they both have even degree, and apply the theorem.

It is perhaps a bit misleading to attribute the entire theorem to
Euler – he stated it, but he only proved the easy direction. One thing
he reportedly did write a proof of is the so-called “handshake lemma”,
which also lets us settle the question of what happens if there is
exactly one vertex of odd degree.



lecture 2: eulerianity, simple graphs, and subgraphs · 1ma170 5

Lemma 8 (Handshake lemma). Let G = (V, E) be a finite graph. Then

2|E| = ∑
v∈V

dv.

Proof. To see this, we use the method of double counting – that is, we
count one thing in two different ways. The thing we are going to
count is half-edges, that is, edges going out of vertices.12 12 Imagine taking a pair of scissors to

each edge, cutting them in half, to
motivate the term. You can then recover
a graph by pairing up half-edges into
edges.

On the one hand, each edge obviously contributes two half-edges,
so there are 2|E| in the entire graph. On the other hand, each vertex
contributes precisely its degree to the count of half-edges, so there
are ∑v∈V dv of them, proving the lemma.

Corollary 9. Any graph must have an even number of odd-degree vertices.

Proof. The sum of the degrees must, by the handshake lemma, be
even, and the sum of an odd number of odd numbers is odd.

Simple graphs, basic definitions

Definition 10. A simple graph G consists of a set of vertices V and a
set of edges E ⊆ (V

2).
13 Equivalently, it is a multigraph with no loops 13 When X is a set and k is a number, the

notation (X
k ) means the set of subsets of

X of size k.
or parallel edges.

So the definition we give here is actually exactly the same as what
we gave for a multigraph, except wherever we said “multiset” there,
we say “set” here.

Since we, for a simple graph, require that there either be an edge
or not, instead of having potentially many edges between two vertices,
we can now actually count the number of simple graphs we can have
on any given finite set.14 14 While there are infinitely many

different multigraphs even on a single
vertex, of course.Lemma 11. For any set V with n elements, there are 2(

n
2) different simple

graphs on this set, and they all have at most (n
2) edges.

Proof. To begin, note that∣∣∣∣(V
2

)∣∣∣∣ = (
|V|
2

)
=

(
n
2

)
and so the number of subsets of (V

2) is precisely 2(
n
2). Now, the edges

are by definition a subset of this set, and a simple graph is determined
by its vertex set and edge set, so the statement follows.

That all the graphs have at most (n
2) edges is immediate – they are

a subset of (V
2), so of course a subset can’t be bigger than the set it’s a

subset of.



lecture 2: eulerianity, simple graphs, and subgraphs · 1ma170 6

Now, as we saw in the exercises in the previous session, this notion
of graphs being different cares about the labels, that is, about the under-
lying sets. Two graphs with different vertex sets are never equal, and
even two graphs with the same vertex set that “look equal” can still
be non-equal if we label them differently.

Figure 4: Three non-equal but isomor-
phic graphs. The first two have the
same underlying set but different edge-
sets, the third has a different underlying
set entirely.

In some sense all three graphs in Figure 4 are “the same graph” –
they are all just a line of three vertices – but they are not the same
graph in the sense of being literally equal. So we need to find a good
notion of equivalence that captures this.

To do so, we start by finding what notion of functions between
simple graphs is the “right” or “interesting” one.15 15 If you want to think about morphisms

between multigraphs you have to do
something slightly different.Definition 12. Suppose G = (V, E) and H = (V′, E′) are two simple

graphs. A function f : V → V′ is called a graph morphism if, whenever
{v, w} ∈ E, we also have either { f (v), f (w)} ∈ E′ or f (v) = f (w).16

16 Whether we also allow f (v) = f (w)
for a graph morphism will vary a bit
between texts – I prefer this definition,
but the previous year’s lecture notes
preferred not allowing this. So be a
bit careful on the occasions where this
difference actually matters!

One example of a graph morphism is given in Figure 5.

Figure 5: A morphism between two
graphs, one with vertices a through
f and one with vertices α through
ε. Which vertex is sent to which is
illustrated with the red arrows.

Note that we don’t, in this definition, require that the morphism
be injective – so we are allowed to identify vertices, and since we
allow f (v) = f (w) we can also contract edges. Sometimes we will
instead want to discuss injective morphisms, which don’t allow this.
Notice that the graph in Figure 5 is neither injective nor surjective.
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Now that we have the notion of morphism, we can define the
notion of equivalence we were looking for – the notion of isomorphism.
As you may have seen in other courses, an isomorphism is just a
bijective morphism.17

17 The truly general definition is actually
that it is a morphism that has an inverse
– so f : G → G′ is an isomorphism
if there exists a morphism h : G′ →
G such that f ◦ h and h ◦ f are the
identity morphisms on the two graphs.
But for graphs this is equivalent to
just requiring f to be bijective, and
bijectivitiy is easier to think about, so
we give that as our definition.

Definition 13. Two simple graphs G and H are isomorphic if there
exists a bijective graph morphism from G to H.

The notion of isomorphism is an equivalence relation, and for each
n there are finitely many equivalence classes of n-vertex graphs.18 18

Exercise 1. Prove this.This means we can finally give a definition of what we meant by the
very first figure we drew in the course, the graph with no labels:

Definition 14. An unlabelled simple graph is an equivalence class of
simple graphs.

While this definition is perhaps a bit abstract, what it means is
actually rather intuitive: It means we don’t care about how exactly
we attach the labels or what they are, but when we actually reason
about the graph we will usually have to pick a representative of the
equivalence class, that is, pick one way of labelling it.

We will sometimes, in the future, be a little bit sloppy about the
difference between being equal and just being isomorphic – so for
example we might say that G contains H when what we really mean
is that G has a subgraph isomorphic to H.

Having said this, we are of course immediately led to our last
definition of this lecture, namely of what we mean by subgraph.

Definition 15. A subgraph of a graph G = (V, E) is a graph H =

(V′, E′) such that V′ ⊆ V and E′ ⊆ E. By how we have defined
graphs, this means we also require that whenever {v, w} ∈ E′ we also
have v, w ∈ V′.

We will often say that a graph H is a subgraph of G if there exists
an injective morphism from H into G. Whenever such an injective
morphism exists, there is a subgraph of G that is isomorphic to H,19 19

Exercise 2. Prove this.but it doesn’t have to be literally equal to H – so this is an instance of
us ignoring the difference between isomorphism and equality. On the
few occasions the difference matters, we will be careful about it.

One particular type of subgraph that is often used is the induced
subgraph.

Definition 16. For any graph G = (V, E) and any subset W ⊆ V,
the induced subgraph G[W] = (W, E′) has as its vertices W, and as its
edges all the edges of G with both endpoints in W, that is,

E′ = {{v, w} ∈ E | v, w ∈ W} .

So we pick every edge we are allowed to pick given the vertices we
chose.
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There is also the analogous notion of an edge-induced subgraph,
which is just the same thing except determined by a set of edges.

Definition 17. Given a graph G = (V, E) and a subset E′ ⊆ E of its
edges, the edge-induced subgraph G⟨E′⟩ has E′ as its edges and the set
of vertices incident to an edge in E′, i.e.

W =
{

v ∈ V
∣∣ ∃w ∈ V : {v, w} ∈ E′} ,

as its vertices.

We close out this lecture with one final piece of terminology:

Definition 18. A subgraph which contains all of the vertices of its
supergraph is called a spanning subgraph. That is, for H = (V′, E′) to
be a spanning subgraph of G = (V, E), we require V = V′.

Exercises

Exercise 3. Suppose G = (V, E) is a connected graph with four
vertices of odd degree. Is it always possible to partition E into two
sets E1 and E2 so that E = E1 ⨿ E2 and (V, E1) and (V, E2) admit
Eulerian trails? In other words, can we colour the edges of G red
or blue in such a way that both the red and blue graphs contain an
Eulerian trail?20 20 This exercise is from last year’s lecture

notes – I haven’t thought much about it
myself, so I don’t know how hard it is.

What if we have 2k vertices of odd degree, for k ≥ 2?

Exercise 4. Suppose f is a morphism from G to G′, and g is a mor-
phism from G′ to G′′. Show that f ◦ g is a morphism from G to G′′.21 21 This, together with the fact that the

identity function on any graph is a
morphism, shows that the class of
simple graphs with graph morphisms
forms a category. If you already knew
what that term means, this may be
somewhat interesting. If you did not,
you can safely ignore this sidenote.

Exercise 5. Suppose G and H are two isomorphic graphs. Prove that
G is connected if and only if H is, and that G is Eulerian if and only if
H is.22

22 For basically all notions we discuss in
this course that don’t obviously depend
on the labelling, it will be true that they
are invariant under isomorphism. These
are just the two we have seen so far.

Exercise 6. Draw all the different non-isomorphic graphs on four
vertices. How many are there? Compare to the number of graphs on
a fixed set of four vertices.
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