
Lecture 3: Common graph families, trees, and Cay-
ley’s theorem · 1MA170
Vilhelm Agdur1

1 vilhelm.agdur@math.uu.se

2 November 2023

We start by introducing a few named families of graphs. Then we
introduce the class of trees, and prove some results about them, such
as that they have leaves.2 The main result is Cayley’s theorem, which 2 Contradicting what our own eyes can

see outside in the November weather.counts the number of labelled trees on n vertices.

Common graph families

We warm up today by giving names to some common families of
simple graphs that we will see reappearing throughout the course.
They are illustrated in Figure 1.

Figure 1: Four graphs: K4, P2, C5, and
K3,2,1.

1. The complete graphs on n vertices, denoted Kn. These contain all
the (n

2) potential edges. These are also called cliques when we see
them as subgraphs of a bigger graph.

2. The paths of length ℓ, denoted Pℓ. If we take the set {0, 1, . . . , ℓ} to
be our vertex set, the edges are precisely of the form {i − 1, i} for
i ∈ [ℓ].3 3 This is another notation you might not

have seen before: For an integer n, we
write [n] for the set {1, 2, . . . , n}3. The cycle graphs on n vertices, denoted Cn. We can think of these

as a path of length n − 1 with an extra edge joining the first and
last vertex.

4. The complete bipartite graphs on a + b vertices, denoted Ka,b.
These have as vertex set the disjoint union of two sets L and R,4 4 Think of these as the “left” and “right”

vertices.with |L| = a and |R| = b, and there is an edge between v and
w whenever v ∈ L and w ∈ R. When we see these graphs as
subgraphs of a bigger graph, we sometimes also call them bicliques.

mailto:vilhelm.agdur@math.uu.se


lecture 3: common graph families, trees, and cayley’s theorem · 1ma170 2

5. Generalizing the complete bipartite graphs, the complete multi-
partite graph on r parts with sizes a1, a2, . . . ar, denoted Ka1,a2,...,ar ,
has as its vertex set the disjoint union of r sets V1, V2, . . . , Vr, where
|Vi| = ai, and there is an edge between two vertices whenever they
are not in the same part. We can notice that when r = 2 this is a
complete bipartite graph, and when all the parts are of size 1 this
is a complete graph.

For most of these, it is obvious how many edges they will have.
Let us state a lemma that shows how many the complete multipartite
graphs have.

Lemma 1. The complete multipartite graph Ka1,a2,...,ar has 1
2
(
n2 − a2

1 − . . . − a2
r
)

edges.

Proof. We use the handshake lemma from the previous lecture. Since
a vertex in Vi has one edge to every vertex not in Vi, it has degree
n − ai, and there are ai such vertices. Thus we can compute that

2|E| = ∑
v∈V

dv =
r

∑
i=1

∑
v∈Vi

dv

=
r

∑
i=1

∑
v∈Vi

(n − ai) =
r

∑
i=1

ai(n − ai)

= n

(
r

∑
i=1

ai

)
−

r

∑
i=1

a2
i = n2 −

r

∑
i=1

a2
i

proving the claim.

Corollary 2. The complete bipartite graph Ka,b has 1
2
(
n2 − a2 − b2) = ab

edges.

Trees

The main topic of this lecture is the so-called trees. Informally, they
are just graphs that look like trees – though with this intuition we are
drawing them upside-down.5 5 Unless you are a computer scientist, in

which case you draw them the right way
up, I believe.Definition 3. A tree is a graph T = (V, E) that is both connected and

contains no cycles.

Just like for graphs in general, there are countless variants of
the notion of a tree. We can give the tree a root,6 we can consider 6 Which is quite necessary for a biologi-

cal tree.orderings of the vertices in various ways, and so on. None of this
will actually be necessary in the course, however, so we skip defining
these notions.



lecture 3: common graph families, trees, and cayley’s theorem · 1ma170 3

Example 4. Trees appear in many places in various areas – one
common place for them to appear is in the study of algorithms. Let’s
study the quicksort algorithm, and see how it can be represented as a
tree. The algorithm sorts a list of numbers in ascending order, and it
works as follows:

1. Fix an arbitrary pivot p element from the list.

2. Compare all non-pivot elements with the pivot, and put the ones
that are smaller in a list we call L, and the ones that are larger in a
list we call R.7

7 This is of course not the most efficient
way to implement this algorithm – the
correct thing to do is to move elements
around in a single list, since this can be
done “in place” and so will be faster.
But this is mathematically equivalent,
and easier to phrase.

3. Apply the quicksort algorithm to L and R if they contain more than
one element.8

8 Since we did not include the pivot
element in either set, they are both
strictly shorter lists than the one we
started with, so this recursion will
terminate.

4. Return the list LpR.

We can represent this algorithm with a rooted ordered binary9 tree. 9 Binary in the sense of a computer sci-
entist, since this is after all an algorithm.
A mathematician would have a slightly
different definition of binary tree.

This means the tree has one designated vertex we call the root, and
every vertex has potentially a left child and a right child, where a
“child” is a neighbour who is further from the root than themselves.

We create a tree from this algorithm by letting the pivot element
be the root of the tree, and then recursively letting its left child be the
root of of the tree quicksort gives us for the list L, and the right child
be the root of the tree we get for the list R. This hopefully becomes
clearer if we work through an example:

Consider the list 3, 7, 1, 4, 9, 8, 6, 2, 5, and choose 7 as our pivot
element. Then we get L = 3, 1, 4, 6, 2, 5 and R = 9, 8.

So, recursing, we now need to sort the list 3, 1, 4, 6, 2, 5, and we pick
3 as our pivot element, getting a new L = 1, 2 and R = 4, 6, 5. If we
pick 1 as our pivot in L, we get L = ∅ and R = 2. Picking 5 as out
pivot in the previous R, we get L = 4 and R = 6.

Figure 2: A tree gotten from quicksort-
ing a list of integers in our example.

Finally, we need to quicksort the list 9, 8, where we can pick 9 as
our pivot and get L = 8, R = ∅. The resulting tree of what we just did
is drawn in Figure 2.



lecture 3: common graph families, trees, and cayley’s theorem · 1ma170 4

Having seen this example of a place where trees appear, let us
start proving some properties of trees.

Lemma 5. Every finite10 tree with at least 2 vertices contains at least two 10

Exercise 1. Why do we need the
finiteness assumption?

vertices of degree 1. Such vertices are called leaves.

Proof. Let T be a finite tree on at least two vertices. Consider a path
P = xe1x1e2 . . . y of maximum length in T. Assume for contradiction
that one of x and y – w.l.o.g.,11 let’s say x – has degree at least 2. 11 “without loss of generality”.

Figure 3: The two cases we consider
in the proof of Lemma 5, illustrated in
dashed red lines, with the maximal path
drawn in blue.

Then x has a neighbour w different from x1. There are two cases,
which are also illustrated in Figure 3:

1. w is not already a vertex on the path P. Then we could just extend
the path to include w, contradicting our assumption that P was
maximal.

2. w is already a vertex on the path P. However, this must mean
there is a cycle in the graph – we can start walking along T from x
until we reach w, and then loop back along the edge from w to x –
contradicting our assumption that the graph is a tree.

So neither case is possible, and so we conclude that dx = dy = 1,
proving the lemma.

We also get a very simple formula for the number of edges of a
tree:

Lemma 6. Any tree on n vertices has n − 1 edges.

Proof. We prove this by induction in the number of vertices. The base
case is the simple graph on a single vertex, which clearly has one
vertex and zero edges, satisfying the theorem.

Now, suppose T is a tree on n > 1 vertices. By Lemma 5, it has at
least two vertices of degree 1. Pick one of them, say x, and remove it
and the edge it is incident to from the graph.12 12 So, formally, we are looking at the

induced subgraph T[V \ {x}].This leaves us with a tree on n − 1 vertices, and so by our induction
hypothesis it has n − 2 edges. So by removing a vertex and an edge,



lecture 3: common graph families, trees, and cayley’s theorem · 1ma170 5

we were left with n − 1 vertices and n − 2 edges – so clearly we
must have started with n vertices and n − 1 edges, as the lemma
claimed.

We can actually give an exact count of the number of labelled
trees on n vertices as well. We will state the theorem here, but we
postpone the proof of it until a later lecture, when we will have seen
the Kirchhoff matrix-tree theorem, which is a nice way of proving it.13

13 In previous years, this course in-
cluded a proof of this theorem using
Prüfer sequences. However, that proof –
and a different one using double count-
ing – is also included in the course on
combinatorics in this department. So, in
the interest of keeping the contents of
the courses disjoint, we give the proof
using the matrix-tree theorem instead.

If you are interested, and can read
Swedish, you can find the other two
proofs of this theorem in these lecture
notes: https://vagdur.github.io/

Kombinatorik-1MA020/lecture8.pdf.

Theorem 7 (Cayley’s formula). There are nn−2 labelled trees on n vertices.

Having seen all these results about trees, let us give a result giving
a few equivalent characterisations of trees:

Theorem 8. The following statements are equivalent:

1. T is a tree.

2. For any two vertices x, y of T there exists a unique path connecting x and
y.

3. T is edge-minimal among connected graphs, that is, removing any edge
from it makes it disconnected.

4. T is edge-maximal among cycle-free graphs, that is, adding an edge
between any two vertices introduces a cycle.

Proof. We will show that (1) implies (2), that (2) implies (3) and (4),
and that both (3) and (4) imply (1), showing the theorem.

(1) ⇒ (2): Assume T is a tree and x and y two vertices. Since T is
connected, there is at least one path from x to y. If there was another
distinct path, the union of the two paths would contain a cycle, which
is impossible in a tree. Thus the path is unique.

(2) ⇒ (3): Consider any edge {x, y} ∈ E. By (2), this must in
fact be the unique path between x and y, so removing this edge would
disconnect these two vertices and thus the graph.

(2) ⇒ (4): Consider any two vertices x, y ∈ T. By (2), there is
a unique path connecting them. Adding an edge {x, y} would thus
create a cycle – walk along the path from x to y and then head back
along the new edge.

(3) ⇒ (1): If T is edge-minimal among connected graphs, it is
of course connected. So what we need to show to show that it is a
tree is that it contains no cycles. So, assume for contradiction that
it has a cycle – then we could delete an edge of this cycle without
disconnecting the graph,14 contradicting our assumption of edge- 14 Why?

minimality.
(4) ⇒ (1) : If T is edge-maximal among cycle-free graphs, it is in

particular cycle-free, and so what we need to show in order to show

https://vagdur.github.io/Kombinatorik-1MA020/lecture8.pdf
https://vagdur.github.io/Kombinatorik-1MA020/lecture8.pdf


lecture 3: common graph families, trees, and cayley’s theorem · 1ma170 6

that it is a tree is that it is connected. So assume for contradiction
that it is disconnected – then we could add an edge between two
connected components without introducing any cycles, contradicing
our assumption of edge-maximality.

Spanning trees

Recall from last lecture that a subgraph is said to be spanning if it
contains all vertices of G. This notion is particularly interesting if the
subgraph is a tree.

Figure 4: A graph G, with a spanning
tree highlighted in red.

Definition 9. Let G be a graph, simple or multi. A spanning tree of G
is a spanning subgraph that is a tree. One example is given in Figure
4.

Obviously, a graph that is disconnected cannot have any spanning
trees – and for finite graphs, this condition is also sufficient.15 For

15

Exercise 2. Give a proof of this that
does not rely on the axiom of choice.

infinite graphs, the situation is somewhat hairier – the statement that
all graphs have spanning trees is in fact equivalent to the axiom of
choice!

Before proving this statement under the assumption of choice, let
us state the form of the axiom of choice that we will be using.

Lemma 10 (Zorn’s lemma). Let (A,≤) be a non-empty partially ordered
set. A subset C ⊆ A is a chain if for any two elements c, c′ ∈ C, we either
have c ≤ c′ or c′ ≤ c. Assume that for every chain C in A there exists an
upper bound b ∈ A, that is, an element such that c ≤ b for all c ∈ C. Then
there exists a maximal element m of A, that is, an m such that m ̸≤ a for any
a ̸= m.

Having stated this, we can now proceed to state and prove our
theorem about spanning trees.

Theorem 11. Assuming the axiom of choice, all (multi)graphs have a
spanning tree.

Proof. Let G = (V, E) be some graph. We will apply Zorn’s lemma
with A as the set of all cycle-free spanning subgraphs of G, and ≤ as



lecture 3: common graph families, trees, and cayley’s theorem · 1ma170 7

the “is a subgraph of” relation.16 This gives A the structure of a par- 16 Here we mean literal subgraph of, not
just “isomorphic to a subgraph of” –
we really need one to be a subset of the
other.

tially ordered set – and it is nonempty since the subgraph containing
all the vertices and none of the edges is trivially spanning and cycle
free.

So, let C be some chain in A, consisting of elements Hi = (V, Ei)

for i ∈ I,17 and define 17 We really need the index set I here,
not just integer indices – the cardinality
of C could be enormous!B =

(
V,
⋃
i∈I

Ei

)
.

We want to show that B is an upper bound for the chain C – if we can
do this, Zorn’s lemma will apply and give us the theorem.

By construction, B is a spanning subgraph of G. We want to show
that it is an element of A, so we need to show that it is also cycle-free.
So, assume for contradiction that it contains some cycle consisting
of edges e1, e2, . . . , er. Each of these edges must then be contained in
some Hi – let us say that ej is contained in Hi(j).

Since C is a chain, one of these graphs Hi(1), Hi(2), . . . , Hi(r) must
contain all of the others – say it is Hj. Then this Hj must contain
all of the edges e1, e2, . . . , er, and so contain a cycle – but this is a
contradiction, since Hj is an element of A and thus cycle-free.

Now, we need to show that B is indeed an upper bound of the
chain C, in order for Zorn’s lemma to apply. This, however, is easy –
of course Ei ⊆

⋃
i∈I Ei, and so Hi is a subgraph of B for each i.

The conclusion of Zorn’s lemma now gives us the existence of
a cycle-free spanning subgraph that is maximal with respect to the
subgraph ordering, which in this case means it is edge-maximal. So,
by an analogous argument as in Theorem 8,18 this maximal subgraph 18 We can’t quite apply this theorem

directly, because it assumes it is edge-
maximal among all cycle-free graphs,
not just among the cycle-free subgraphs
of a fixed graph. In last year’s lecture
notes they just appeal to this theorem,
but that seems to me to be subtly
wrong.

is in fact a tree, and so we have found our desired spanning tree.

Let us close out this lecture by defining the notion we will be
studying next lecture, namely the complexity of a graph.

Definition 12. Let G be a labelled graph. The complexity of G is the
number of spanning trees of G, denote t(G).

Example 13. Any tree of course has complexity 1, because its only
spanning subgraph is the tree itself. A cycle graph on n vertices will
have complexity n. Cayley’s formula19 tells us that the complexity of 19 Which we admittedly haven’t proven

yet.Kn is nn−2. It turns out that the complexity of the complete bipartite
graph Ka,b is ab−1ba−1, but this is not an easy fact to prove.

Exercises

Exercise 3. We proved that all graphs, including infinite graphs,
have a spanning tree using the axiom of choice in the lecture, and we
stated that in fact the two are equivalent.



lecture 3: common graph families, trees, and cayley’s theorem · 1ma170 8

Prove the axiom of choice using the assumption that all graphs
have spanning trees.


	Common graph families
	Trees
	Spanning trees
	Exercises

