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We introduce the basic notions of spectral graph theory, such as the
adjacency and incidence matrices of a graph. We build up the theory
around these, eventually arriving at the Kirchhoff matrix-tree theorem,
which will let us count spanning trees in a graph.

Throughout this lecture, we will assume that G = (V, E) is a graph
on n vertices, with vertex set [n], and m edges {e1, . . . , em}.

Adjacency matrices

Definition 1. The adjacency matrix A of a graph G is the n × n matrix
having entries Aij = 1 if i and j are neighbours, and zero otherwise.

Figure 1: A graph whose adjacency
matrix we compute in an example.

Example 2. The graph given in Figure 1 has adjacency matrix
0 1 0 1 0
1 0 1 0 0
0 1 0 0 0
1 0 0 0 1
0 0 0 1 0

 .

Remark 3. There are a few things we can notice immediately about
adjacency matrices. First off, they must be symmetric, since of course
i and j being neighbours is the same statement as j and i being neigh-
bours, and the diagonal entries are always zero. Second, the row
sums or the column sums give us the degree of each vertex, since a
row contains one 1 per edge incident to its vertex.

Finally, it follows from the spectral theorem for symmetric matrices
that all eigenvalues of A are real.
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Incidence matrices

There is another way to turn a graph into a matrix that is very useful,
but it is easiest to define it first for directed graphs, so we begin by
giving a definition of a directed graph.

Definition 4. A directed graph G = (V, E) (or digraph for short) consists
of a set of vertices V and a set of edges E, where each edge is a tuple
of two distinct2 vertices. We call the first vertex in the tuple the source 2 It is entirely possible to define what

we mean by a directed multigraph as
well, but for our purposes, we stick to
simple directed graphs with no loops or
parallel edges.

and the second vertex the target of the edge.

Having said this, we can now define the incidence matrix of a
directed graph.

Definition 5. The incidence matrix D of a digraph G is the n × m
matrix having entries Dij, where

Dij =


1 if i is the target of ej

−1 if i is the source of ej

0 otherwise.

For a simple graph G and a matrix D, we say that D is an inci-
dence matrix of G if there is a way to direct the edges of G so that the
incidence matrix of this directed version is D.

Figure 2: A way of directing the edges
of the graph in Figure 1. We have also
labelled the edges with their numbers.

Example 6. In Figure 2 we see one way of directing the edges of the
graph in Figure 1 to make it a digraph. This digraph has incidence
matrix3 3 It is a bit unfortunate that our example

graph has exactly one cycle, so it has
equally many edges and vertices and
the incidence matrix is square – they
are of course not in general square.


−1 0 −1 1 0
1 −1 0 0 0
0 1 0 0 0
0 0 0 −1 1
0 0 1 0 −1


and so this matrix is also an incidence matrix for our original simple
graph.
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Having given these definitions, let us start seeing why these matri-
ces are interesting.

Lemma 7. Let G be a finite simple graph on n vertices with c connected
components, and D be an incidence matrix of G. It holds that

rank D = n − c.

Proof. To begin with, let us see that rank D ≤ n − 1. The column sums
of D are all zero, since each column contains exactly one 1 and one
−1, for the source and target of its associated edge. Therefore, if we
take the sum of all the row-vectors, each entry will be zero, so we have
a non-trivial linear combination of 0, and hence rank D ≤ n − 1.

Now, assume G is in fact connected – then, we will show that this
linear combination of 0 is in fact, up to scaling, the only non-trivial
linear combination of 0 with the row-vectors. So, let ri for i = 1, . . . , n
denote the row-vectors of D, and suppose we have a non-trivial linear
combination

n

∑
i=1

αiri = 0.

Consider a row k for which αk ̸= 0 – in this row, there is a non-zero
entry in every column corresponding to an edge incident to the vertex
k. Each of these columns has one other non-zero entry, and that entry
has the opposite sign of the one in our row. So for these to sum to
zero, the coefficients in the linear combination must be the same. So
what we have seen is that αℓ = αk whenever ℓ is adjacent to k.

However, we assumed G is connected, so this argument in fact
extends to showing that all the coefficients must equal αk, and so this
shows the linear combination is indeed just a rescaling of the sum of
all the rows.

Finally, assume G has c connected components, and observe that
we can always relabel the vertices and edges in such a way that D is
in block-diagonal form, with every block being the incidence matrix
of a connected component. So the claim follows from the statement
for connected graphs.

The statement we are looking towards, counting spanning trees,
will involve determinants, so let’s start proving things about determi-
nants of these matrices.

Lemma 8. Any square submatrix of an incidence matrix D has determinant
0, 1, or −1.

Proof. We prove this by induction in the size k of the k × k submatrix.
The statement is obvious for k = 1, since all the entries of an incidence
matrix are zero, one, or minus one.
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Now consider a submatrix M of size (k + 1) × (k + 1). If every
column of M has either two or no non-zero entries, then det M = 0,
since then every column will sum to zero. Otherwise, there is a
column of M having exactly one non-zero entry. Expanding m along
this column yields det M = ±det M′ where M′ is a k × k submatrix of
D. Hence the result follows by induction.

Now, consider what happens if we pick some set of edges S ⊂ E,
and let DS be just the columns of the incidence matrix that correspond
to these edges – this will in fact be the incidence matrix of the span-
ning subgraph (V, S) of G. So if we pick S as a set of n − 1 edges, this
spanning subgraph will be a spanning tree exactly if it is connected4 – 4

Exercise 1. Prove that a graph on n
vertices and n − 1 edges is a tree if and
only if it is connected.

and Lemma 7 gives us a nice way of checking if it is connected or not:
It is connected whenever rank DS = n − 1.

Lemma 9. Let S be an n − 1-element subset of the edges of G, and let M
denote any (n − 1)× (n − 1) submatrix of the n × (n − 1) matrix DS. Then
M is invertible if and only if (V, S) is a spanning tree of G.

Proof. We already observed that DS has rank n − 1 whenever (V, S)
is a spanning tree, so removing any row from it will create a non-
singular square matrix M.

In the other direction, if M is nonsingular, then DS contains at
least n − 1 linearly independent rows and the same number of linearly
independent columns. Hence rank DS = n − 1 and so (V, S) must be
connected and thus a tree, since it has n − 1 edges.

The Laplacian matrix

We have now gotten to the point where we can introduce the final
matrix associated to a graph that we want to study.

Definition 10. Let G be a finite simple graph. Denote its adjacency
matrix by A, and let ∆ be a diagonal n × n matrix having diagonal
entries ∆ii = di for each i. Then, the Laplacian matrix Q of G is given
by Q = ∆ − A.

The reason we define this matrix is because it connects the adja-
cency and incidence matrices in a nice way.

Theorem 11. Let G be a finite simple graph, A its adjacency matrix, D an
incidence matrix for G, and Q its Laplacian matrix. Then it holds that

Q = DDt = ∆ − A.

Notice that in particular this means that DDt is the same for every
incidence matrix, independent of the orientation chosen of the edges.
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Proof. The entry (DDt)ij is the inner product of rows ri and rj of D.
If i = j, this amounts to summing the squares of the entries in ri,

and there are di of them, each ±1, so the sum of their squares is just
di, as needed.

Now, if i ̸= j, there is a non-zero entry in position ℓ in both ri and
rj precisely when eℓ is an edge between i and j – and this entry has to
be (1)(−1) = −1. Since we assumed G is simple, there can be at most
one edge between i and j. So we have seen that (DDt)ij is −1 if {i, j}
is an edge, and zero otherwise.

In order to arrive at the result we are looking for, we will need
some heavier linear-algebraic machinery.

Definition 12. Suppose M is a square matrix. A cofactor Mij of this
matrix is the determinant of the submatrix of M in which row i and
column j have been removed.

If we consider the matrix whose entries are the cofactors, and take
its transpose, we get the adjugate matrix of M, denoted adj M.

Let us gather some linear-algebraic facts we will need and use
without proof in one lemma:

Lemma 13. Let M be an arbitrary n × n matrix. It holds that

1. M(adj M) = (det M)In.

2. If M is symmetric, so is adj M.5 5 This one is perhaps nearly obvious,
but still good to state explicitly.

3. Suppose M is symmetric and the row- and column-sums of M are all zero,
and let the non-zero eigenvalues of M be λ1, . . . , λn−1. Then any cofactor
of M is equal to 1

n λ1 . . . λn.

Lemma 14. Let Q be the Laplacian matrix of a graph G, and denote by J the
n × n matrix all of whose entries are 1. Then adj Q is a scalar multiple of J.

Proof. We observe first that rank Q = rank D. So if G is disconnected,
then we know by Lemma 7 that rank Q < n − 1, so all the (n − 1)×
(n − 1) matrices determining the cofactors must also be singular, and
thus adj Q = 0.

Now, if G is connected, we get that rank Q = n − 1 and thus
det Q = 0, and so

Q(adj Q) = (det Q)In = 0.

That Q(adj Q) = 0 implies that every column vector of adj Q is
in the kernel of Q. Now, since rank Q = n − 1, this kernel is one-
dimensional – in fact, it is spanned by (1, 1, . . . , 1)t, since we can
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compute

Qi,· · (1, 1, . . . , 1)t = (∆ − A)i,·(1, 1, . . . , 1)t

= di − ∑
j∼i

1 = 0.

So it follows that every column of adj Q is a scalar multiple of
(1, 1, . . . , 1)t – but since Q is symmetric, so is adj Q, and thus all these
scalar multiples have to be the same, proving the lemma.

So we have shown that all these cofactors are in fact equal – so the
final step is to show that they are actually the number of spanning
trees of the graph. To see this, we need one final big hammer from
linear algebra.

Theorem 15 (Cauchy-Binet). Let A and B be two n × m matrices, with
n ≤ m. For any set S ⊆ [m], denote by AS (BS) the submatrix of A (B)
acquired by picking only the columns in S. Then

det
(

ABt) = ∑
S⊆[m]
|S|=n

det (AS)det (BS) .

Now we can finally state and prove the Kirchhoff matrix-tree
theorem:

Theorem 16 (Kirchhoff’s matrix-tree theorem). Let G be a finite simple
graph with Laplacian Q. Then any cofactor of Q equals t(G), the number of
spanning trees of G,6 and if λ1, λ2, . . . , λn−1 are the non-zero eigenvalues of 6 Note that this is the part of the the-

orem that gives a good algorithm for
computing the number of spanning
trees: The Laplacian is trivial to com-
pute, and computing a cofactor of it
just requires you to compute a single
determinant. The second half of the
statement, on the other hand, would
require you to compute the entire spec-
trum of the graph, which is notably
more computation.

Q, then

t(G) =
1
n

n−1

∏
i=1

λi.

Proof. We’ve already proven that all the cofactors are equal, so we can
focus on just a single cofactor. Let D be an incidence matrix of G, and
let D̃ be D with its last row removed. Then det

(
D̃D̃t) is a cofactor of

Q = DDt, and we can express this cofactor using the Cauchy-Binet
theorem as

det
(

D̃D̃t) = ∑
S⊆E

|S|=n−1

(
det D̃S

)2 .

Now, we know from Lemma 8 that the determinant of a square
submatrix of an incidence matrix always has determinant −1, 1, or
0,7 so each summand on the right is either 0 or 1. However, we know 7 So since D̃ is a submatrix of D, a

square submatrix of D̃ is a square
submatrix of D as well.

from Lemma 9 that such a square matrix is invertible – and thus has
non-zero determinant – if and only if the corresponding spanning
subgraph is a spanning tree. So the right hand sum in fact counts
spanning trees.

That the second statement of the theorem follows from the first is
exactly the third statement of Lemma 13.
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Having arrived at our big result, let us now – as promised – use it
to give a proof of Cayley’s formula.

Proof of Cayley’s formula. The key observation here is that a tree whose
vertices are labelled from 1 through n is precisely a spanning tree
of the complete graph on n vertices, if we label also its vertices by 1
through n. So if we apply the matrix-tree theorem to the complete
graph, we will get a count of the labelled trees on n vertices.

It is easy to see that the Laplacian of Kn is
n − 1 −1 . . . −1

−1 n − 1
. . .

...
...

. . . . . . −1
−1 . . . −1 n − 1


and as expected the vector (1, 1, . . . , 1)t is an eigenvector for the eigen-
value 0. A little bit of thought reveals that there are n − 1 other
eigenvectors of the form (0, . . . , 0, 1,−1, 0, . . . , 0)t all corresponding to
the eigenvalue n. Hence

t(Kn) =
1
n

nn−1 = nn−2

as desired.

Exercises

Exercise 2. The definition of the adjacency matrix extends in a natural
way to directed graphs – we say that Aij is 1 whenever there is an
edge from i to j. So this matrix is no longer necessarily symmetric.

It is of course never possible for a matrix to have the same ad-
jacency matrix and incidence matrix, because the former has no
negative entries while the latter, if it has any entries, has at least one
negative entry. However, it is not as immediately obvious whether it
is possible for A − At = D to happen for a directed graph G.8,9 8 If this did happen, one might call

this adjacency-and-incidence matrix a
coincidence matrix.
9 Yes, I gave this exercise entirely
because of the pun.

Is this in fact possible? If so, for which graphs does it happen?
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