
Lecture 6: Weights, distances, and minimum span-
ning trees · 1MA170
Vilhelm Agdur1

1 vilhelm.agdur@math.uu.se

13 November 2023

Continuing from our previous discussion on the existence of spanning
trees and counting of them, we come to the problem of actually finding
them. We give two different algorithms for this. Finally we consider
the problem of computing distances in a graph, and give an algorithm
for this.

As we saw in the exercises in our previous session, the question of
spanning trees becomes more interesting if we also add weights to the
edges of our graph, since we can then consider the minimum spanning
trees.

We also saw that to do this, we need to restrict ourselves to finite
graphs,2 or stupid things will happen. If we additionally assume that 2 Later, when we measure distances, we

will also need to assume all weights
are positive, or we will again have silly
things happen.

all weights are distinct, there is even a unique minimal spanning tree.

Prim’s algorithm

The first algorithm we introduce for this is Prim’s algorithm, which
works by starting in a particular vertex and growing the tree.

Figure 1: An illustration of how Prim’s
algorithm finds a minimal spanning
tree in a graph.

Definition 1 (Prim’s algorithm). Let G = (V, E, w) be a finite con-
nected weighted graph, and let v ∈ V be an arbitrary vertex of G.
Initialize the algorithm by setting T = ({v}, ∅), the subtree contain-
ing only v.

mailto:vilhelm.agdur@math.uu.se

lecture 6: weights, distances, and minimum spanning trees · 1ma170 2

As long as T is not a spanning subgraph, find an edge e of G
between V(T) and V(T)c which has minimal weight. Add this edge
together with its endpoint in V(T)c to T. When V(T) = V, return T.

How this algorithm constructs an MST is illustrated in Figure 1.

Before we can prove that this algorithm actually works, we will
need a little lemma about what happens when you remove edges
from trees.3 3 This statement is perhaps in some

sense obvious, but it did not occur to
me immediately. The proof in the old
lecture notes omits the steps that would
even require the lemma, and the proofs
I found online did not omit those steps
but did leave the lemma implicit.

Lemma 2. If T = (V, E) is a tree and e = (u, w) an edge of T, then
F = (V, E \ e), the graph gotten by removing the edge e from T, has exactly
two connected components, both of which are trees.

More generally, removing k edges from a tree will create k + 1 connected
components, each of which is a tree.

Proof. That the connected components of a graph gotten by removing
edges from a tree will always be trees is easy to see – they are by
definition connected, and removing edges can’t have introduced any
cycles, so they are connected and acyclic, i.e. trees.4 4 A graph all of whose connected

components are trees is called a forest,
of course. These are precisely the
acyclic graphs. So one very poor
definition of “tree” could be “a tree is a
connected forest”.

Now, to see that F must have exactly two connected components,
let U be the connected component containing u, and likewise for W.
Assume v is some vertex not in U – we will show it is then in W.

Since T is connected, there is a path P connecting v to u – and
since v is not in U, this path must have been destroyed by removing
the edge e. Now, since e = (w, u) is incident to u, it must in fact have
been the final edge of the path P, so we can write

P = v e1 v1 e2 . . . eℓ w e u.

This however means that by removing the last edge of P we get a
path from v to w, proving that v ∈ W, as desired.

The result for a general number of edges removed follows by induc-
tion from the one-edge case.

Theorem 3. Prim’s algorithm is correct, that is, it always generates a
minimum spanning tree.

Proof. Let G = (V, E, w) be a finite connected weighted graph, and
let the sequence of subgraphs that Prim’s algorithm creates be T0 ⊆
T1 ⊆ . . . ⊆ Tn−1 = T. It is easy to see that Ti will always be connected
and have i edges, so Tn−1 has to be a tree, so Prim’s algorithm at least
always finds a spanning tree.

To see that this spanning tree is minimal, we consider an MST T′,
and show that w(T) ≤ w(T′). If T = T′ we are done, so assume they
are distinct, and let

j = max
{

i ∈ {0, 1, . . . , n − 1}
∣∣ Ti ⊆ T′} .

lecture 6: weights, distances, and minimum spanning trees · 1ma170 3

That is, j is the final time at which all edges of Tj are also edges of T′.
So, let e = (u, w) be the edge between V(Tj) and V(Tj)

c added by
the next step of the algorithm, with u ∈ V(Tj) and w ∈ V(Tj)

c. By
assumption, this edge is not in T′.

Since T′ is a tree, there must be a unique path in T′ connecting u
and w, and at some point this path must cross from V(Tj) into V(Tj)

c.
Call the edge it crosses with f = (u′, w′).

By construction, e has minimal weight among all edges between
V(Tj) and V(Tj)

c, so we must have w(e) ≤ w(f). Let us now show
that we can modify the tree T′ into a different spanning tree T′′ which
contains e and satisfies w(T′′) ≤ w(T′), so that T′′ is also an MST.

The way we do this is of course by removing the edge f from
T′ and adding the edge e. It is clear that this does not increase the
weight of the graph, so the thing we need to show is that it is still a
tree.

It follows from Lemma 2 that removing the edge f yields a graph
with two connected components, V(Tj) and V(Tj)

c, each of which is
a tree. Clearly the edge e also goes between these components, so
adding it back in will reconnect the two trees, and that adding an
edge between two disconnected trees yields a tree is clear, since it
connects the graph and can’t possibly add a cycle.

So we can repeat this process inductively, taking the new tree T′′

as the new MST with which we compare T, until eventually T =

T
′′′ ···′′′ and so T is an MST.

Remark 4. The runtime of this algorithm will depend on the imple-
mentation – specifically on how the graph is represented5 and on how

5 Are you storing essentially an ad-
jacency matrix, or a list of edges, or
something like a “linked list” kind of
structure? There are many ways of
representing a graph in memory.you find the next edge between V(Ti) and V(Ti)

c. A good implemen-
tation has a runtime of O (|E|+ |V| log (|V|)).6

6 If you just store an adjacency matrix,

you get a runtime of O
(
|V|2

)
, while if

you store the graph as a list of vertices,
where each vertex is a list of its neigh-
bours, and use a Fibonacci heap to help
finding the minimal edges, you get the
runtime of the “good” implementation.

Kruskal’s algorithm

The second algorithm we consider for finding MSTs is Kruskal’s algo-
rithm, which doesn’t iteratively create larger trees, but instead creates
a forest that grows together into a single tree.

Definition 5 (Kruskal’s algorithm). Let G = (V, E, w) be a connected
finite weighted graph, and let L be a list of the edges of G sorted in
ascending order of weight.

1. Initialise the forest F = (V, ∅).

2. While F is not spanning remove the first entry from L, and call it e.
If adding e to F would not create a cycle, add e to F.

3. Return F.

lecture 6: weights, distances, and minimum spanning trees · 1ma170 4

Figure 2: An illustration of how
Kruskal’s algorithm finds a minimal
spanning tree in a similar graph as the
one in Figure 1, which illustrated Prim’s
algorithm. Notice that adding the edge
with weight 2 would create a loop and
thus it is skipped.

How this algorithm constructs an MST is illustrated in Figure 2.

Theorem 6. Kruskal’s algorithm is correct, that is, it always generates an
MST.

Proof. Let G = (V, E, w) be a finite connected weighted graph. It
is clear by construction that Kruskal’s algorithm always generates a
cycle-free spanning subgraph which is edge maximal, and so by a
similar argument as when we were proving all graphs have spanning
trees, it must always generate a spanning tree.

To see that this spanning tree is in fact maximal, we again compare
with a known MST. In particular, let T be the spanning tree found
by Kruskal’s algorithm, and let T′ denote an MST that has a maximal
number of edges shared with T. We will show that if T ̸= T′ we can
actually modify T′ to have even more edges in common with T, while
still being an MST, contradicting our maximality assumption, and so
we must have T = T′.

So, assuming T ̸= T′, let e be the lowest-weight edge of T that
is not contained in T′. Adding e to T′ will create a cycle, and some-
where on this cycle there must be an edge f not contained in T.

Our modification of T′ will be to remove f and add e, getting a
new spanning tree T′′.7 Since T′ is an MST, w(T′) ≤ w(T′′). On the 7

Exercise 1. Prove that T′′ actually is a
spanning tree.

other hand, since Kruskal’s algorithm chose to add e instead of f
when given the choice, we must have w(e) ≤ w(f), and so therefore
we also have w(T′′) ≤ w(T′), and so w(T′) = w(T′′), and T′′ is also
an MST. This, however, gives us our contradiction, since T′′ shares
more edges with T than T′ did.

Remark 7. Kruskal’s algorithm has a time complexity of O (|E| log (|V|)),
but if you are already given the edges sorted by weight, it runs in
O (|E| α (|V|)) time, where α is the inverse of the Ackermann func-
tion.

lecture 6: weights, distances, and minimum spanning trees · 1ma170 5

Graph distances

Another thing we did in our exercises was to consider distance func-
tions on graphs. Recall the following definition from the exercises:

Definition 8. For a weighted graph G with positive edge-weights, we
define the graph distance between two vertices v, v′ ∈ G by

dG(v, v′) = min
walks P from v to v′

∑
e∈E(P)

w(e).

We proved during the exercises that this actually is a metric on the
set of vertices whenever the graph is connected, so it makes sense to
call this a distance and use the language of metric spaces. We can
also extend this definition to disconnected metric spaces if we recall
the convention that a minimum over an empty set is ∞.8 8 This is really the same thing as why an

empty sum is zero, an empty product 1,
an empty union is ∅, and so on.Definition 9. The diameter of a graph is the same as the diameter

for any metric space – it is the maximum distance between any two
vertices.9 That is, 9 This has also been called “longest

shortest path”, presumably by people
who like confusing terminology.diam(G) = max

v,u∈V(G)
d(v, u).

Instead of trying to compute the diameter of a graph, let us just try
to compute the distance between two vertices. Or rather, it turns out
to not be markedly harder to compute the distance between a given
vertex and every other vertex, so we give an algorithm that can do
this, and then we will say how to turn this into an algorithm for the
simpler problem.

In fact, we can interpret the problem of finding the distances
between a given vertex and the rest of the graph as a problem of
finding a certain spanning tree, rooted at the given vertex. If we
just let each vertex pick its neighbour closest to the root as its parent,
tiebreaking arbitrarily,10 this tree precisely encodes the information 10 That is, if a vertex has two neighbours

that minimize the distance to the root,
we pick one of them arbitrarily.

we need.11

11

Exercise 2. Prove that this really is a
tree. You can equivalently think of it as
the union of all shortest paths between
the root v and some other vertex. (This
tree is called a shortest-path tree.)

Definition 10 (Dijkstra’s algorithm). We take as arguments a weighted
graph G = (V, E, w) and an initial vertex v0, and the state of the
algorithm consists of a currently visited vertex v, a set Q of unvisited
vertices, a partially defined function p : V → V assigning each vertex
its parent, and a distance function d(v0, ·).

We initialize the algorithm by setting v = v0, Q = V, p(v0) = v0

and undefined otherwise, and

d(v0, v) =

0 if v = v0

∞ otherwise.

In each time step, we do the following:

lecture 6: weights, distances, and minimum spanning trees · 1ma170 6

Figure 3: An illustration of how Dijk-
stra’s algorithm finds a shortest path
tree in a graph. Edge weights are given
in blue, the distance function d(v0, ·) is
given in red, and the parent function p
is indicated by the red arrows pointing
along edges.

1. Remove the currently visited vertex v from Q.

2. For each neighbour v′ of v, check whether

d(v0, v) + w({v, v′}) < d(v0, v′).

If this is the case, going from v′ to v and then back to v0 gives a
shorter path to v0 than previously known, so we set d(v0, v′) to
d(v0, v) + w({v, v′}) and let p(v′) be v.

3. If Q contains a vertex with finite value of d(v0, ·),12 we set the 12 The reason we phrase it like this
is that we want the algorithm to be
able to handle disconnected graphs
as well. If G is disconnected, Q will
never be empty, but the things in
different connected components will
have distance ∞ even after we have seen
the entire connected component of v0.

new currently visited vertex to be the vertex v in Q with smallest
d(v0, v). Otherwise, the algorithm terminates and returns the
distance function d and the parent function p.

How this algorithm works is illustrated in Figure 3.

Remark 11. If we are only interested in the distance to some specific
vertex v′, we can find the distance to it by terminating the algorithm
already when v′ is the currently visited vertex.

If we want to find the actual path that realizes the found distance,
we can just iterate the parent function p – starting in a vertex v, walk
to p(v), then to p(p(v)), and so on until you reach v0. Notice that this
path is not necessarily the unique path realizing the found distance.

With the right implementation, Dijkstra’s algorithm has a runtime
of O (|E|+ |V| log (|V|)).

lecture 6: weights, distances, and minimum spanning trees · 1ma170 7

Exercises

Exercise 3. We have shown in an exercise during our previous exer-
cise session13 that a weighted graph with all weights distinct has a 13 If you did not solve that exercise, a

proof is also in last years lecture notes.unique minimum spanning tree.
Is the stronger statement that in a graph G with distinct weights no

two spanning trees can have the same weight also true?

Exercise 4. One way to find a path between two vertices is to first
find a minimum spanning tree for the graph and then find the unique
path between them in this tree. Will this always be the shortest path
between them?

If not, will there always be some pair of vertices such that this is the
shortest path between them?

Exercise 5. Are any of the things we did in this lecture useful for
computing the diameter of a graph? Think about how one might do
it, and what runtimes your suggested algorithms will have.14 14 You can then, if you like, spend some

time googling to learn what the best
approaches known achieve.Exercise 6. If there are multiple edges of the same weight there may

be some element of choice in the ordering of the edges in Prim’s and
Kruskal’s algorithms. Using this show that given an arbitrary MST
the algorithms can always find it.

Exercise 7. Use Prim’s algorithm and Kruskal’s algorithm to find a
minimum spanning tree of the graph in Figure 4.

Figure 4: Graph for Exercises 7 and 8.

Exercise 8. Implement Dijkstra’s algorithm on the graph in Figure 4

using the vertex in the lower left corner as the initial vertex v0.

	Prim's algorithm
	Kruskal's algorithm
	Graph distances
	Exercises

