
Exercises
Group 2

13 November 2023

Exercise 1

We have two distinct trees T, T′. Let H be the graph formed by adding
the e from T into T′. Since a tree is an edge-minimal acyclical con-
nected graph the only possible outcome of this (in order to not contra-
dict edge-minimality) is that H contains a cycle. Since T is a tree this
cycle can not be contained in it, and as such the cycle must contain an
edge f that is not in T. Lastly we construct T′′ by removing this edge
f from H. Prove that T′′ is a spanning tree.
Answer:
Since all vertices of H were connected to the vertices of the cycle and
removing an edge from a cycle keeps it connected, we have that T′′

is connected through the remaining vertices of the cycle. We also
have that E(T′′) = E(T′) = n − 1, hence T′′ is a tree. T′′ contains
all vertices of G since we didn’t remove any vertices from T′ in the
construction of T′′, therefore T′′ is a spanning tree.

exercises 2

Exercises 2

Prove that this really is a tree. You can equivalently think of it as the
union of all shortest paths between the root v and some other vertex.
(This tree is called a shortest-path tree.)
Answer:
Let G = (V, E) be a positively weighted connected graph with |V| = n.
Dijkstra’s algorithm creates a parent function p such that all vertices
in the resulting graph except r is assigned a neigbouring parent
vertex. Equivalently one could view this as every vertex except r
being assigned the edge from it to its assigned parent, and as such
the algorithm adds one edge per vertex except r. Notice that such an
edge may not be the same throughout all of the algorithm and that
there may be some ambiguity in choice in the choice of it due to paths
of equal length. Therefore upon termination we have a subgraph of
G, G′, such that E(G′) ≤ n − 1. Since the algorithm always adds
an incident edge of a vertex in question such that the vertex becomes
connected to a path to the root r we have that all vertices of G′ are
connected to r and as such that all vertices are connected to each other,
and hence G′ is connected. However we also know that trees are
edge-minimal connected graphs and that a graph is a tree if and only
if it is connected and has n − 1 edges. Hence E(G′) ≥ n − 1, and as
such E(G′) = n − 1. Therefore G′ is a connected n-vertex graph of
n − 1 edges which means its a tree.

exercises 3

Exercise 3

We have shown in an exercise during our previous exercise session
that a weighted graph with all weights distinct has a unique mini-
mum spanning tree.

Is the stronger statement that in fact no two spanning trees have
the same weight also true?

Answer:
No, it is not true.

For a graph G = (V, E, w), where all weights w are distinct, we
have a tree T. If there is a way to modify T into tree T′, which has the
same weight as that of T, then the statement is false.

As a tree T always has (|V| − 1) edges, every edge added must
result in an edge removed and vice versa. And as all weights are
distinct no single edge can be switched out in a way that results in
a tree with the same weight. So, for weight to be conserved, at least
two edges must be removed and switched out for other ones. The
condition is that the increase in weight from one edge switch must
be counteracted by a decrease in weight from another switch. So, as
long as there are unused edges that can facilitate a switch like that, it
is indeed possible, which makes the statement false. This can easily
be seen in Figure 1

Figure 1: Graph G = (V, E, w), with tree
T in red and tree T′ in green. Notice
that both trees have a weight of 10.

As this can be done for at least some graphs, the statement is
proven false.

exercises 4

Exercise 4

One way to find a path between two vertices is to first find a min-
imum spanning tree for the graph and then find the unique path
between them in this tree.

Answer:

1. Will this always be the shortest path between them?

No, there is no guarantee that this would be the shortest path
between this two vertices. To show this, one can look at a spe-
cific example as a counterexample. Given a graph shown in the
Figure 2 (left):

• it should be obvious for the reader that Figure 2 (middle) is an
MST (If not, one can try to use Kruskal’s or Prim’s algorithm to
find it).

• Now, given the path to go from C to D via the path in the MST,
one would lead to a path with total weight 7.

• However, in Figure 2 (right), we could have use a shorter path
(with weight 5) which the edge that was removed to form the
MST.

Figure 2: Left: Example weighted graph.
Middle: MST. Right: Shorter Path from
C to D

2. If not, will there always be some pair of vertices such that this is the
shortest path between them?

Yes, there will always be some pair of vertices such that this is
the shortest path between them. This is true if edge1, emin with 1 Note that you can have more than

one edge in a graph with the minimum
weight. Also, one can have multiple
shortest path between two vertices

minimum weight wmin always exist in the MST. The shortest path
between any two vertices that are connected by an emin should be
the path with only emin.

Since emin has minimum weight, any other shorter path between its
vertices that is not this, would imply that either:

• there is an edge with a lower weight (which contradict with the
definition of emin) or

• another edge with minimum weight connected to the same pairs
of vertices (which would just lead to another emin in another
MST and also contradict the definition of a simple graph)

exercises 5

Now, one just need to prove that at least one emin would always
exist in any MST, then we will have proved our statement. To do
this, we will prove by contradiction.

Given a graph, G(V,E) with w(emin) = wmin where emin = {v1, v2}.
We first consider the existence of path P that connects v1 to v2 that
is not Pmin = v1eminv2. Here, we would also have w(P) = w and
w > wmin:

(a) if P does not exist, then emin must be in the MST, since its the
only way to connect v1 and v2.

(b) if P exist, then it implies the existence of a cycle in the graph
since there are two ways of going from v1 to v2. Hence, there
are also two ways of having a spanning tree.

Now, in the scenario where P exist, assume that Pmin is not in the
MST but P is.

(a) First, we add emin into the MST to form a graph with cycle.

(b) Now if we remove the maximal edge in the cycle , the removed
edge can’t be emin.

(c) This would again form a tree but with the weight of the tree less
than the weight of the MST, contradicting the definition of an
MST.

Hence, emin must always exist in an MST and thus, there will
always be some pair of vertices such that the path in the MST is the
shortest path between them.

exercises 6

Exercise 5

Are any of the things we did in this lecture useful for computing the
diameter of a graph? Think about how one might do it, and what
runtimes your suggested algorithms will have.

Answers:
It’s pretty useful to know how to compute the distance between
any two nodes in a weighted graph if you want to find the maximal
distance.

The most straightforward way to compute the diameter is just
determining the distance function d(v, ·), ∀v ∈ V. This can be done
via an algorithm which takes the current maximum distance D as an
argument . Start algorithm with D = 0. Then for every vertex v ∈ V,
use Dijkstras algorithm to find d(v, ·). If max(d(v, ·)) > D, then
set D = max(d(v, ·)). When you have iterated through all vertices,
return D. This will obviously give the diameter. Dijkstras algorithm
has runtime O(|E| + |V| log(|V|)). So this algorithm has runtime
O(|V|(|E|+ |V| log(|V|))).

One could definitely utilise the fact that intialising Dijkstras algo-
rithm from a node, one also gets the distance between other nodes
"for free". Not only is d(v, v′) = d(v′, v), but also the distances be-
tween any intermediate nodes from v′ to v is acquired. However, it
seems somewhat complicated to determine a Θ complexity for such
an algorithm with our current knowledge.

Searching the internet for a more effective algorithm I found the
Floyd-Warshall algorithm which has a time complexity of O(|V|3).
This algorithm uses a modified weighted adjacency matrix which
finds the distance between all nodes simultaneously by considering
each node as an intermediate node. For example, we might know
that there is a path of length d from v to v′, now consider if the path
via v′′ is shorter: d(v, v′′) + d(v′′, v′) < d(v, v′)? The complexity of the
Floyd-Warshall algorithm is preferred if the amount of edges greatly
exceeds the amount of vertices, meaning that the graph is dense.

exercises 7

Exercise 6

If there are multiple edges of the same weight there may be some
element of choice in the ordering of the edges in Prim’s and Kruskal’s
algorithms. Using this show that given an arbitrary MST the algo-
rithms can always find it.

Answers:

Kruskal’s Reaches all MST:s

Let T be an MST of G = (V, E). We are going to construct a weight-
ordered sequence, L, of all edges in E as input to Kruskal’s algorithm.
This sequence will be constructed in such a manner that for any
weight w ∈ W we have that all edges in E(T) of weight w appear first
in the list followed by any residual edges in E \ E(T) also of weight w.

We will begin by letting W be a ≤-ordered sequence of all the
weights which appear in G. Then for w ∈ W let LT

w be a sequence
which orders the elements of {e ∈ E(T) |w(e) = w}, i.e. Lw is an
ordering of the edges in T with weight w (might be empty if there are
no edges in T of weight w), and Let LTc

w be a sequence which orders
{e ∈ E \ E(T) |w(e) = w}.

(Below we will use ⊕ for sequences and this will be interpreted as
(a1, . . . , am)⊕ (b1, . . . , bn) = (a1, . . . , am, b1, . . . , bn), and for an ordered
sequence I = (i1, . . . , ik) we will interpret

⊕
i∈I

Ai as Ai1 ⊕ . . . ⊕ Aik .)

Now let Lw = LT
w ⊕ LTc

w and finally:

L =
⊕

w∈W
Lw

We now want to show that Kruskal’s algorithm indeed returns T
upon termination when given L as input.

We will suppose for contradiction that there is some first timestep
i at which Kruskal’s deviates from T. This deviation could occur in
two different ways:

• The algorithm adds an edge ei which is not in T.

• The algorithm does not add ei even though it is in T.

In fact the deviation must be of the former type since the second
type would mean that adding ei creates a cycle with the already
added edges all of which are in T. However this is not possible since
that would mean there is a cycle in T.

Now if we add ei to T we create a cycle. This cycle must contain
some edge of greater weight than ei since all edges in T of weight
≤ w(ei) have been added before ei by the algorithm. This is since

exercises 8

ei is in Lw(ei)
Tc

which comes after both LT
w(ei)

and all the edges with
weight strictly less than w(ei) in L. Now if we remove this edge from
the cycle we get a connected graph of n − 1 edges. Hence this graph is
a tree. Call it T′. We now have that w(T′) < w(T) which contradicts
the fact that T is an MST. Hence the algorithm does not deviate at
any point, and as such the algorithm produces T.

Prims Algorithm Reaches all MST:s

Let G = V, E be a weighted graph with weight w. Assume there is
a MST T which Prims algorithm can’t find. Define w′ by removing a
small amount ϵ from the weight of each edge in T such that 0 < ϵ <

m where
m = min

ei ,ej∈E
|w(ei)− w(ej)|

This is now the unique MST of G with weights w′. Prims algorithm
can find this MST due to it being unique. In every step of the algo-
rithm we are going to consider adding edges between the vertices
V(T) of our yet generated tree and V(T)C. We want to add the mini-
mal edge so there is going to be an ordering such that all wi − ϵ comes
before all wi but after wj < wi due to our choice of ϵ. However, this
means that the ordering is still proper with our original weight w.
This means that the run on {G, w′} to find the MST T is a valid run of
Prims algorithm on {G, W}. So Prims algorithm can find T .

	Exercise 1
	Exercises 2
	Exercise 3
	Exercise 4
	Exercise 5
	Exercise 6

