
Lecture 7: The max-flow min-cut and marriage theo-
rems · 1MA170
Vilhelm Agdur1

1 vilhelm.agdur@math.uu.se

15 November 2023

Continuing our exploration of things that can be done with weighted
graphs, we move on to considering flows in weighted directed graphs,
which model things like traffic flows. We see the connection between
these and edge cuts of graphs, and prove the Ford-Fulkerson theorem.

Finally, we use our result about flows to prove the Hall marriage
theorem.

In our exercises, we saw this figure:

Figure 1: A hypothetical graph mod-
elling public transport flow from
Uppsala to Södertälje.

If we interpret the edge-weights as how many thousands of passen-
gers can travel the route per hour, it makes sense to ask the question
of how many can travel from Uppsala to Södertälje per hour. Intu-
itively, it is clear that the answer must be two thousand, because the
traffic is bottlenecked by the Enköping-Bålsta and Knivsta-Märsta con-
nections – the fact that five thousand per hour can get from Uppsala
to Knivsta doesn’t help at all, and upgrading the Bålsta-Stockholm
route wouldn’t improve things.

Let us now turn these intuitive considerations into actual rigorous
mathematics. First, let us define the graphs we are working on:

Definition 1. A weighted directed graph G consists of a directed graph
(V, E) and a weight function w : E → R. For it to be a flow network
we additionally require that all weights be positive, that there be a
distinguished source vertex s and sink vertex t, and that whenever
u → v is an edge, v → u is not also an edge.2

2 Recall that in general, it is allowed in
a simple directed graph to have both
the edge u → v and the edge v → u –
what is not allowed is multiples of the
same edge, or loops. In this case, the
restriction of not having such back-and-
forth edges is not a genuine restriction,
however: If we have such a pair of
edges, we can get an equivalent flow
network by introducing a “dummy
vertex” in the middle of one of the
edges, as in Figure 2.

Figure 2: Subdividing an edge using
a dummy vertex, to get around the
restriction that there be no back-and-
forth edges.

We define a capacity function c : V × V → [0, ∞) by that c(v, v′) =
w(v → v′) whenever v → v′ is an edge of G, and c(v, v′) = 0
otherwise.

mailto:vilhelm.agdur@math.uu.se

lecture 7: the max-flow min-cut and marriage theorems · 1ma170 2

These flow graphs define the capacity of the network to handle
traffic. Next, let us define the actual flows, which are the possible
actual traffic situations. There are two natural constraints these
should satisfy:

1. The flow through an edge can’t be greater than the actual capacity
of the edge, so we aren’t putting more cars on the road than will
actually fit.

2. Other than the source and the sink nodes, where we imagine
vehicles are entering and exiting the graph, the flow into a vertex
must equal the flow out of it. Trains do not magically vanish, nor
do they appear out of nowhere or teleport.

Definition 2. A flow on the flow network G with capacity function c is
a function f : V × V → [0, ∞) which satisfies

1. the capacity constraint that

f (v, v′) ≤ c(v, v′) ∀v, v′ ∈ V,

2. and the conservation constraint

∑
w∈V

f (w, v) = ∑
u∈V

f (v, u)

whenever v ∈ V \ {s, t}.

The value of a flow, denoted by | f |, is the net out-flow at the source,
that is

| f | = ∑
v∈V

f (s, v)− ∑
w∈V

f (w, s).

Figure 3: An example of a flow in the
graph from Figure 1. The weights of
the edges are given in red, and the
flows through them in blue. This
flow has value 1.5, which we can see
both by computing the net out-flow
from Uppsala and the net flow into
Södertälje.

Remark 3. It follows from the conservation constraint that | f | is also
equal to the net in-flow at the sink.3 Therefore, we can always assume 3

Exercise 1. Prove this.that | f | ≥ 0, since if it were not, we could just swap the roles of s and
t.

lecture 7: the max-flow min-cut and marriage theorems · 1ma170 3

s-t-cuts

Having defined what we mean by a flow, let us next formalize the
intuitive notion of a bottleneck in the graph.

Definition 4. Let G = (V, E, w, s, t) be a flow network with source
s and sink t. An s-t-cut is a partitioning of V into two sets S, T such
that s ∈ S and t ∈ T. The capacity of the cut is

c(S, T) = ∑
(v,v′)∈S×T

c(v, v′) = ∑
e∈E(S,T)

w(e).

Considering our intuition about the bottlenecks, it should be clear
that any flow from s to t has to at some point pass from S into T, and
so use some of the capacity of the cut. So the total flow cannot be
greater than the capacity of the cut, that is, | f | ≤ c(S, T) for any flow
f and any s-t-cut S, T.

In fact, it turns out that equality is only achieved in this inequality
in the most extreme case.

Lemma 5. Let G be a flow network with a flow f and an s-t-cut of V into S
and T. If | f | = c(S, T), then | f | is maximal among all flows, and c(S, T) is
minimal among all s-t-cuts.

Proof. As we saw, for any other flow f ′, we must have∣∣ f ′
∣∣ ≤ c(S, T) = | f |,

and so f is maximal. Similarly, for any other s-t-cut S′, T′ we have

c(S, T) = | f | ≤ c(S′, T′)

and so S, T is minimal.

Residual networks

A central construction in the theory of flow networks is the residual
network, which as the name suggests encodes how much capacity is
left over by a flow.

Definition 6. Let G be a flow network with capacity function c, and
let f be a flow on G. The residual capacity c f is a function from V × V
into [0, ∞) defined by4 4 Notice how we use the assumption

that there are no back-and-forth edges
in G here – otherwise the definition
would not make sense.

c f (u, v) =

c(u, v)− f (u, v) if (u, v) is an edge in G

f (v, u) if (v, u) is an edge in G

0 otherwise.

lecture 7: the max-flow min-cut and marriage theorems · 1ma170 4

Figure 4: The residual network of the
flow in Figure 3.

The residual network G f is the weighted directed graph which has
an edge u → v whenever c f (u, v) > 0, and this edge has weight
c f (u, v) if so.

We give an example of this in Figure 4, using the same flow net-
work we have seen before.

How can we use these residual networks to find ways to improve
a flow? The idea is that a walk from the source to the sink in the
residual graph will correspond to a way of improving the flow. How-
ever, so far we have only defined walks in undirected graphs, so let us
define what we mean here.

Definition 7. In any directed graph, a directed path consists of a
sequence of vertices v0 v1 . . . vk and a sequence of edges e1 e2 . . . ek,
such that edge ei points from ei−1 to ei. We also call such a path a
v0-vk-path.

If G is a residual network, a directed path P from s to t is called an
augmenting path, and it has residual capacity

c f (P) = min
e∈E(P)

c f (e).

That these augmenting paths correspond precisely to ways to
improve the flow is the content of our next lemma.

Lemma 8. Let f be a flow in a flow network G such that G f admits an
augmenting path P. Then the flow f ′ defined by

f ′(u, v) =

f (u, v) + c f (P) if (u, v) is an edge in P

f (u, v)− c f (P) if (v, u) is an edge in P

f (u, v) otherwise

satisfies | f ′| > | f |.

Exercise 2. This proof is mostly just a slightly tedious unpacking of
the definitions, which is not very illuminating to do during a lecture,
but useful to do yourself for learning the definitions. Therefore, we
leave it as an exercise. Remember that there are three things you need
to check:

lecture 7: the max-flow min-cut and marriage theorems · 1ma170 5

1. The capacity constraint on f ′,

2. the conservation constraint on f ′,

3. and that | f ′| > | f |. (Note that this is a strict inequality!)

Figure 5: An augmenting path in the
residual network of Figure 4, and the
new flow f ′ gotten from it.

We see one example of improving a flow using an augmenting
path in Figure 5.

Having now finally set up all the terminology and lemmata we
need, we can finally state and prove the Ford-Fulkerson theorem.

Theorem 9 (Ford-Fulkerson). Let f be a flow on the flow network G. Then,
the following are equivalent:

1. f is a maximal flow,

2. G f contains no augmenting path, and

3. there is an s-t-cut S, T with | f | = c(S, T).

Proof. That 3. implies 1. is precisely the content of Lemma 5. To see
that 1. implies 2., consider what the contrapositive of this implication
is – it is precisely that the existence of an augmenting path implies
there is a higher-value flow, which is exactly Lemma 8.

Therefore, the thing we need to show is that 2. implies 3. – so
assume G f does not contain an augmenting path,and let S be the
set of vertices that can be reached from s by a directed path. Let

lecture 7: the max-flow min-cut and marriage theorems · 1ma170 6

T = V \ S. We want to show that these S and T are the desired s-t-cut
with capacity equal to | f |.

By assumption t ∈ T, since otherwise there would be an augment-
ing path. We also see that every arrow u → v from S to T in G must
have its full capacity used by f , or there would be an arrow in G f

from u to v corresponding to the unused capacity. Likewise, every
arrow u → v from T to S must have a flow of zero, or there would
be an arrow in the opposite direction in G f . Therefore we must have
c(S, T) = | f |, as desired.

Remark 10. Notice how this theorem does not actually say anything
about the existence of a maximal flow. For finite networks, however,
we can do a bit of analysis-style reasoning to prove that a maximum
flow must exist. The details of this are left as an exercise.

The Ford-Fulkerson theorem very nearly gives us an algorithm, by
just repeatedly finding augmenting paths and augmenting along them.
It is still a bit unspecified,5 however – specifying the details gives you 5 If you find your augmenting paths in

a sufficiently poor way, and you have
irrational values for some capacities, the
algorithm might not terminate at all!

for example the Edmonds-Karp algorithm.

Definition 11 (Edmonds-Karp Algorithm). Given a flow network G,
let f be the zero-flow. Then, in each time step:

1. Construct G f .

2. Find a shortest augmenting path in G f using breadth-first search –
if none exists, we are done and return f .

3. If we found such a path, augment f using it.

Analysing this algorithm shows that it will have a running time of
O
(
|V|2|E|

)
.

Remark 12. If you look through our proofs and constructions,6 always 6

Exercise 3. Actually do this, reading
through the notes with an eye to
keeping everything an integer.

assuming all capacities are actually integers, you will see that the
proofs actually give the existence of an integer maximal flow, that is, a
maximal flow where f (e) ∈ Z for every edge e.

The Hall marriage theorem

The final thing we are going to do in this lecture is to apply what we
have just learned about flows to prove the Hall marriage theorem.
We already saw in the exercise session that a matching in a graph
G = (V, E) is a subset M of the edges, such that no two edges in M
share an endpoint. A matching in which every vertex is incident to
some edge in the matching is called perfect.

The Hall marriage theorem concerns itself particularly with finding
perfect matchings in bipartite graphs, so let us define what those are.

lecture 7: the max-flow min-cut and marriage theorems · 1ma170 7

Definition 13. A graph G = (V, E) is called bipartite if there is a
partition of V into two sets A and B, such that E ⊆ A × B. That is, all
edges go between A and B, not within the two parts.

For a bipartite graph, it makes sense to relax the notion of a perfect
matching to a matching of A into B, which is just a matching such that
every vertex in A is incident to an edge in the matching.

In order for this to be possible, it must clearly be the case that for
every subset Q ⊆ A, it has at least |Q| neighbours in B, or we would
trivially be unable to match Q into B. So, for any set of vertices Q,
let us denote its set of neighbours by N(Q). What the Hall marriage
theorem says is that our necessary condition is in fact also sufficient.

Theorem 14 (Hall’s marriage theorem). Let G = (V, E) be a finite
bipartite graph with V = A ⨿ B. Then G contains a matching of A into B if
and only if |N(Q)| ≥ |Q| for all Q ⊆ A.

Proof. We have already seen the necessity of the condition, so what
remains is to show that it is sufficient. So assume that |N(Q)| ≥ |Q|
for all Q ⊆ A.

We create a flow network as follows: We introduce a new vertex s
which is a neighbour to every vertex in A, and a new vertex t which
is a neighbour to every vertex in B. We direct the edges so that they
all point away from s towards t, and give the edges incident to s or t
capacity 1, and the edges between A and B capacity ∞.7

7 This is just for convenience – we could
do it with a sufficiently large integer
depending on G here instead, but the
argument seems clearer if we don’t have
to worry about these capacities.

Figure 6: A flow network gotten from
a bipartite graph as in the proof of the
marriage theorem.

Now consider the easy s-t-cut where S′ = {s} and T′ = A ∪ B ∪ {t}.
It is easy to see that this cut has capacity c(S′, T′) = |A|, and hence
c(S, T) ≤ |A| for any minimum cut (S, T).

lecture 7: the max-flow min-cut and marriage theorems · 1ma170 8

In particular, this means that for any minimum s-t-cut S, T there
cannot be an edge u → v with u ∈ S ∩ A and v ∈ T ∩ B, since if so
the capacity of the flow would be infinite. So any neighbour of S ∩ A
must lie in S ∩ B – it must be in B by the bipartition, and must still
be in S for the flow to still have finite capacity. Or, in other words,
N(S ∩ A) ⊆ S ∩ B.

Figure 7: An example of a non-trivial
minimal s-t-cut in a flow network gotten
from a bipartite graph.

So, using this, let us compute a lower bound on c(S, T):8

8 The first equality is just the definition
of the capacity of a cut.

The second equality uses our observa-
tion that there can’t be any edges from
S ∩ A into T ∩ B – so the only edges
that can contribute to the capacity of the
cut are edges from s to things in T ∩ A,
or edges from things in S ∩ B to t. It
may be helpful to consider Figure 7 to
understand what is going on here.

The third equality just uses that all the
terms of the sums are 1.

For the first inequality, we in fact
have |T ∩ A| = (|A| − |S ∩ A|). The
inequality part is that |N(S ∩ A)| ≤
∩S ∩ B, which is just our observation
that N(S ∩ A) ⊆ S ∩ B.

The final inequality, that |N(S ∩ A)| ≥
|S ∩ A|, is where we use the assumption
of the theorem.

c(S, T) = ∑
u∈S,v∈T

c(u, v)

= ∑
v∈T∩A

c(s, v) + ∑
u∈S∩B

c(u, t)

= |T ∩ A|+ |S ∩ B|
≥ (|A| − |S ∩ A|) + |N (S ∩ A)|
≥ |A| − |S ∩ A|+ |S ∩ A| = |A|.

Since we’ve already seen that a minimum cut has capacity at most |A|,
this proves that minimum cuts in fact have a capacity of exactly |A|.

Using our remark about integer flows, we see that this implies
that there exists an integer flow with value |A|. So this flow must
fill every outgoing edge from s, and so by the conservation property
each vertex in A must have outgoing flow 1. Since the flow is integral,
all this flow must use a single edge.

Looking at the other endpoint of this edge in B, we see that this in
fact can’t have in-flow from any other vertex, since it can only have a
maximum out-flow of 1 to t. So therefore the set of edges e from A to
B such that f (e) = 1 form a matching of A into B.

Exercises

Exercise 4. Prove that for a finite flow network G = (V, E, w) there
always exists a maximal flow, because the set of possible flows can be
seen as a compact subset of R|E|, and the function sending f to | f | is
continuous.

Exercise 5. Let G = (V, E) be some flow network with source s and
sink t. Let R be the set of all vertices v such that there is a directed
path in G starting at s, passing through v, and finishing at t.

Prove that for any flow f and any edge e which does not have both
endpoints in R, f (e) = 0. Deduce from this that we may as well
assume that V = R whenever we reason about flow networks.

Exercise 6. Let G = (V, E) be some flow network, and assume that
V = R in the sense of the previous exercise. Let S, T be a minimal
s-t-cut of G. Prove that for any vertex v ∈ S, there is a directed path

lecture 7: the max-flow min-cut and marriage theorems · 1ma170 9

from s to v entirely contained in S, and for any vertex u ∈ T, there is
a directed path from u to t entirely contained in T.

	s-t-cuts
	Residual networks
	The Hall marriage theorem
	Exercises

