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We begin by continuing to pursue consequences of the Ford-Fulkerson
theorem, proving König’s theorem. Then we proceed to show Dirac’s
theorem on the existence of Hamilton cycles, and we finish with a
discussion on independent sets, proving the Caro-Wei theorem.

König’s theorem

In our last lecture, we proved the Ford-Fulkerson theorem relating
minimum cuts and maximal flows, and used it to prove the Hall
marriage theorem on matchings in bipartite graphs. We begin this
lecture by proving another result we can derive from Ford-Fulkerson,
namely König’s theorem about vertex covers of bipartite graphs.

Definition 1. Let G be a finite simple graph. A vertex cover of G is a
subset S ⊆ V such that every edge has an endpoint in S. The covering
number of G, denoted β(G), is the minimum size of any vertex cover
of G.

Example 2. A star graph has covering number 1, while a complete
graph on n vertices has covering number n − 1. A cycle graph on 2n
vertices has covering number n.

Theorem 3 (König’s theorem). Let G be a bipartite graph. Then the
maximum cardinality of a matching on G equals β(G), the minimum
cardinality of a vertex cover of G.

Proof. Let M be a maximal matching in G, and like in the proof of the
marriage theorem, construct a flow network G′ from G. As we saw in
the proof of that theorem, this matching M corresponds to a maximal
flow in G′ of value |M|. By Ford-Fulkerson, this means there is a
minimum cut S, T on G′ of capacity |M|.

Now, given this cut, let us construct a vertex cover. In particular,
we let

C = (A ∩ T) ∪ (B ∩ S).

That this C is a vertex cover of G is precisely the statement that there
is no edge a → b with a ∈ A∩S and b ∈ B∩T. This, however, is some-
thing we already saw is true for all minimum cuts in the previous
proof – because if there were such an edge, it would contribute ∞ to
the capacity of the cut. So C is indeed a vertex cover, and it is easy to
convince oneself, looking at Figure 1, that |C| = c(S, T) = | f | = |M|.
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Figure 1: A non-trivial minimal s-t-
cut in a flow network created from a
bipartite graph.

So what we have seen is that the size of a maximal matching upper
bounds the minimum vertex cover size, that is, β(G) ≤ |M|.

The other direction of the inequality in fact holds for all graphs,
not just bipartite graphs – every edge of a matching has to be covered
by a vertex in the cover, and no vertex can cover more than one edge
of the matching at a time. So any vertex cover has to have at least as
many vertices in it as a maximal matching has edges.

Hamilton cycles

We studied, at the very beginning of the course, the notion of Eulerian
circuits. The twin notion of Hamilton cycles appeared in our exercise
session, but less us quickly repeat what we said about those.

Definition 4. Let G = (V, E) be a finite simple graph. A Hamil-
ton cycle in G is a cycle that visits every vertex of G.2 If G admits a 2 Recall that a cycle by definition is a

walk that starts and ends at the same
vertex, and does not reuse any vertices
other than the one it started with.

Hamilton cycle, we call it Hamiltonian.

Unlike for Eulerianity, there is no simple condition to determine
whether a graph is Hamiltonian. In fact, computing whether a graph
is Hamiltonian is an NP-Complete problem.

Remark 5. Given a Hamiltonian cycle C in G, we can easily construct
a perfect matching of G by just picking every second edge in the
cycle. We can of course not in general turn a perfect matching into a
Hamilton cycle, so Hamiltonicity is a stronger condition than having
a perfect matching.

That Hamiltonicity is an NP-Complete problem means we prob-
ably will never have any necessary and sufficient conditions for it.
However, we can still prove results of the form “if condition so-and-
so holds, G is Hamiltonian”. Let us prove the most famous such
result.3 3 It is named after a different Dirac than

the one of quantum mechanics fame.
Theorem 6 (Dirac’s theorem). Let G = (V, E) be a simple graph on
n ≥ 3 vertices, such that every vertex has degree at least n

2 . Then G is
Hamiltonian.
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Proof. Assume G is a graph satisfying the conditions of the theorem.
Let us begin by observing that this G cannot be disconnected – if it
were, the vertices in the smallest component would have fewer than
half of the other vertices to connect to, so they would have too low
degree.

Figure 2: The path P along with the
configuration of two edges that must
exist by the pigeonhole principle.

Now, consider a path P of maximum length in G, say

P = v0 e1 v1 . . . vk−1 ek vk.

Since this path is maximal, it contains all neighbours of v0 and of
vk, since otherwise it could be extended. By our degree condition,
there are (counting with multiplicity) at least n such neighbours –
and so by essentially the pigeonhole principle, there must be an edge
ei = {vi−1, vi} on our path such that vi is a neighbour of v0 and vi−1

is a neighbour of vk, as in Figure 2.
Now we notice that this in fact lets us turn our path into a cycle

– we start at v0, walk until vi−1, then use the edge to vk, walk back-
wards to vi, and finally use the edge to v0. This gives us a cycle C.

Figure 3: A longer path than P created
from the cycle C, assuming it was not a
Hamilton cycle.

It remains to see that this C is in fact a Hamilton cycle. So, sup-
pose for contradiction that it is not, so that there is some vertex v not
on the cycle. Since G is connected, we can in fact assume that this
vertex is adjacent to some vertex of C. This, however, means we can
create a longer path than P, by starting at v, walking onto C, and then
following the cycle, as indicated in Figure 3. However, we assumed
P was a maximal path, so we have a contradiction. So C must be a
Hamilton cycle.

Figure 4: A graph used to show that the
condition in Dirac’s theorem is the best
possible uniform lower bound.

Remark 7. This result is in fact the best possible result with a uniform
lower bound on the degrees of the vertices – if we had picked any k(n)
less than n

2 , there would be a counterexample. For example, consider

the graph in Figure 4, where we have taken k =
⌊

n−1
2

⌋
and glued

together two copies of Kk−1 by identifying two vertices. This graph
has minimum degree k, but can of course not contain a Hamilton
cycle since such a cycle would have to visit the glued-together vertex
twice.

Let us consider one particular example of a graph family that is
Hamiltonian.
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Definition 8. The d-dimensional cube graph has as its vertex set {0, 1}d,
that is, the set of binary strings of length d. Two vertices are neigh-
bours if the corresponding binary strings differ in only one position.
The first few are illustrated in Figure 5.

Figure 5: The d-dimensional cubes for
d = 0, 1, 2, 4. In the four-dimensional
case we have highlighted some edges in
red, to illustrate the inductive structure
of the graph family.

Theorem 9. The d-dimensional cube is Hamiltonian for all d.

Exercise 1. Prove this.

Figure 6: The original patent for
the device using a Gray code – this
supposedly happens in the thingy
labelled by 15?

Remark 10. Notice that Theorem 9 gives us an ordering of the length-d
bit strings suh that going from one to the next always only requires
us to change one of the bits. This ordering is known as the Gray code,
and it was originally invented to help in converting from analog to
digital signals for colour television in the fifties.

Independent sets

Another notion we encountered during the exercises is that of an
independent set. Let us repeat the definition again here.

Definition 11. An independent set in a graph G = (V, E) is a subset
I ⊆ V of the vertices such that no two elements of I are adjacent. The
size of a maximum independent set in G is called the independence
number of G, denoted α(G).

We saw that this concept in fact connects to the concept of match-
ings if we consider the line graph of a graph.

Definition 12. Given a graph G = (V, E), the line graph L(G) of G
has as its vertices the edges of G, and there is an edge between e and
e′ whenever they share an endpoint in G. This is illustrated in Figure
7.

Figure 7: A graph G on the left, and on
the right we have its line graph L(G)
drawn on top of G in red.
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Remark 13. A matching on a graph G is precisely the same thing as an
independent set in its line graph L(G).

In the exercises, we sketched out an argument as to why finding
an independent set is NP-Complete. Let us now actually go through
the details of the proof.

Our method will be to show that we can encode an instance of
3-SAT as a problem of finding an independent set of a certain size in a
graph. This will prove that independent set is NP-Complete, because
the Cook-Levin theorem tells us that 3-SAT is.

So first, let us define what an instance of 3-SAT is.

Definition 14. An instance of 3-SAT is the problem of determining
whether a given logical formula consisting of a conjunction of clauses
of length 3 is satisfiable. So, we have some set of logical variables
x1, x2, . . . , xn. A literal is xi or ¬xi for some i ∈ [n], and a clause of
length 3 is a disjunction of three literals, e.g. x4 ∨ ¬x10 ∨ x3. We
then take the conjunction of some number of such clauses, getting a
formula like

(x1 ∨ x2 ∨ ¬x3) ∧ (x2 ∨ x3 ∨ ¬x4) ∧ (x1 ∨ ¬x2 ∨ x4) ,

and what we want to determine is whether we can assign each vari-
able a true or false value in such a way that the entire formula is
true.

Theorem 15. The problem of determining whether a graph contains an
independent set of size k is NP-Complete.

Proof. We prove this by associating to each instance of 3-SAT an
instance of the independent set problem, and showing that the 3-SAT
formula is satisfiable if and only if there is an independent set of the
right size in the graph.

Figure 8: The graph corresponding to
the 3-SAT formula (x1 ∨ x2 ∨ ¬x3) ∧
(x2 ∨ x3 ∨ ¬x4) ∧ (x1 ∨ ¬x2 ∨ x4).

In particular, given a formula, we create a graph as follows: For
each clause, draw a triangle, and label its vertices with the literals of
the clause. Then, for each literal, draw an edge between its vertex
and any vertex labelled with the negation of the literal. An example
of this process is given in Figure 8.

We claim that this graph has an independent set of size equal to the
number of clauses, i.e. the number of triangles we drew, if and only
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if the corresponding formula is satisfiable. If there is an independent
set of that size, it is clear that it must contain one vertex from each
triangle, which corresponds to picking one literal from each clause.
Assigning the variables so that each of these literals becomes true
gives a satisfying assignment.

In the other direction, any satisfying assignment must of course
make at least one literal per clause true. Picking a vertex correspond-
ing to one of those literals from each clause gives us an independent
set of the desired size.

Remark 16. Earlier, we considered vertex covers, which are sets S
of vertices such that every edge has an endpoint in S. Notice that
the complement of an independent set is a vertex cover – if there
were some edge that wasn’t covered by this complement, both its
endpoints would be in the complement of the complement, that is, in
the independent set, which is of course impossible.

So we have that the complement of a maximum independent set
is a minimum vertex cover, and so α(G) + β(G) = n. So we can use
König’s theorem also to find a maximum independent set in bipartite
graphs.

Similarly to how the NP-Completeness of finding Hamilton cycles
meant we can’t give a general characterization of those, we can’t find
an easy formula for α(G). We can, however, give some lower bounds
on it – and this will let us introduce a new proof technique to the
course, the probabilistic method.4 4 As the name implies, this method

requires some probability theory. It
shouldn’t involve anything much more
involved than high school probability,
and certainly nothing beyond an
introductory university course in the
subject.

This method features prominently
in the course on combinatorics at
this university, and the Caro-Wei
theorem is proved in that course as
well. That course gives more theoretical
foundation to the probability theory,
as well as applying the method to
problems across combinatorics, not just
to graph theory.

Theorem 17 (Caro-Wei). It holds for any graph G = (V, E) that

α(G) ≥ ∑
v∈V

1
dv + 1

.

Proof. To prove this, we will consider a randomized greedy method
of constructing an independent set, and show that it on average
produces an independent set of this size.

So, suppose we have been given a list L of the vertices of G. Our
greedy algorithm starts with a set I = ∅, and then at each time step it
removes the first element v of L, checks whether any neighbour of v is
in I, and if not, adds v to I.

That this process gives us an independent set is clear – we never
add in a vertex adjacent to something already in the set. Now, let us
introduce the randomization to the algorithm, by picking a uniformly
random order for the list L.

We can compute5 the expected size of the independent set found as 5 This is a very standard computation in
the probabilistic method, and one of the
reasons it is so powerful – we reduce a
complicated calculation that involves the
entire structure of a graph into a sum
of easy calculations that just involve a
vertex and its neighbours.

E [|I|] = E
[
∑ v ∈ V1{v∈I}

]
= ∑

v∈V
E
[
1{v∈V}

]
= ∑

v∈V
P (v ∈ I) ,
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so what we need is a lower bound on the probability that a given
vertex is in the independent set.

Now, clearly, if a vertex ends up first among all its neighbours on
the list, then it will always be added to I, since none of its neighbours
will be in I. So the probability that it ends up first on the list is a
lower bound on the probability that it ends up in I.6 6

Exercise 2. In general this is a lower
bound, not an equality. Why?

The probability that it ends up on the list before all its neighbours
is precisely the probability that in the list of just it and its neighbours,
which has length dv + 1, it ends up first. This probability is easily seen
to be 1

dv+1 ,7 which gives us the desired lower bound of 7 You can think of it as that we first
choose a random slot for v, which can
be done in dv + 1 ways, and then place
the rest of the elements. Only the choice
of place for v matters for the desired
probability.

E [|I|] ≥ ∑
v∈V

1
dv + 1

.

How do we get from this bound on the expected value to the
statement that there actually exists such an independent set? We
observe that the average outcome can’t possibly be greater than
every possible outcome, so there has to be an actual outcome which
achieves this lower bound.

Vertex colourings

The final thing we introduce in this lecture, but mostly discuss in a
later lecture, is the notion of a vertex colouring.

Definition 18. A k-colouring of a graph G = (V, E) is a function
c : V → [k], where we think of the numbers 1, 2, . . . , k as colours,
such that no two adjacent vertices are sent to the same colour.8 The 8 On rare occasions, we will want to

think about colourings that do not
necessarily fulfill this condition. Then
we will call those colourings improper,
and the ones with the property will be
proper colourings.

chromatic number of a graph G, denoted χ(G), is the least integer k
such that G has a k-colouring.

Example 19. The complete graph Kn has chromatic number n, and a
bipartite graph has chromatic number 2.9 9 Unless it contains no edges at all, in

which case it of course has chromatic
number 1.Remark 20. Notice how, for a k-colouring c, each of the k colour classes

c−1(i) forms an independent set in G.

This concept of course has relations to other graph parameters. Let
us introduce a final one, and then state some relations.

Definition 21. If G = (V, E) is a graph, a set C ⊆ V is called a clique
if the induced subgraph V[C] is complete. The clique number of G,
denoted ω(G), is the largest integer k such that there exists a clique of
size k in G.

Proposition 22. The following inequalities hold for any graph G = (V, E):

1.

χ(G) ≥ |V|
α(G)

.



lecture 8: vertex covers, hamilton cycles, independent sets · 1ma170 8

2.
χ(G) ≥ ω(G).

Exercise 3. Prove this.

Exercises

Exercise 4. Show that the d-dimensional cube graph is bipartite.

Exercise 5. For a graph G = (V, E), let ∆ = maxv∈V dv be the
maximum degree of G. Show that10 10 How would you colour a graph with a

greedy algorithm?

χ(G) ≤ ∆ + 1.
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