
Graph Theory

Lecture notes for 1MA170

Fabian Burghart

Fall 2022

Contents

Lecture 1 Introduction: Bridges of Königsberg 2

Lecture 2 Simple graphs and subgraphs 7

Lecture 3 Trees 13

Lecture 4 Counting spanning trees 18

Lecture 5 Weights and distances 24

Lecture 6 Hamilton cycles 30

Lecture 8 The max-flow-min-cut theorem 35

Lecture 9 Matchings 40

Lecture 10 Connectivity 45

Lecture 11 Planarity 50

Lecture 12 Vertex colourings 55

Lecture 13 More on colourings 60

Lecture 14 Edge-colourings and Ramsey Theory 64

Lecture 16 Szemerédi’s regularity lemma 68

Lecture 17 The Rado graph 73

Lecture 18 The Erdős-Rényi random graph 78

Lecture 19 More on random graphs 83

1

Lecture 1 Introduction: Bridges of Königsberg

In the 18th century, the Prussian city of Königsberg was divided into four
different landmasses by the Pregel river: The islands Kneiphof and Lomse and
the mainland to either side of the river. Those landmasses were connected
by seven bridges:

• Two bridges each going from either part of the mainland to Kneiphof

• One bridge each going from either part of the mainland to Lomse

• and one more bridge connecting Kneiphof and Lomse

(Today, the situation is a bit different: The city, after remaining a German
exclave until World War II then fell to Russia and is now known under
its Russian name, Kaliningrad. During the war, two of the bridges were
destroyed (one between either part of the mainland to Kneiphof). However,
a new bridge connecting Oktyabrsky – formerly Lomse – to the southern
mainland was constructed).

Given this situation, the mathematician Leonard Euler became invested in
determining whether one could give a tour through the city traversing all
bridges exactly once. In 1736, he gave a rigorous proof that one cannot, in
a paper that is now regarded as the founding moment of graph theory. His
argument was based on the following abstractions: Since the exact position
of a walker on a landmass is irrelevant, we can represent the landmasses by
abstract points (which we call vertices) and the bridges by line segments
(which we call edges) connecting those points. These are the basic ingredients
for what we call a multigraph in modern language:

Definition 1. A (multi-)graph G is a triple (V,E, ι) consisting of a set V of
vertices, a set E of edges, and a map ι : E → P1(V) ∪ P2(V) assigning to
each edge e its endpoints1

In this way, after Euler’s abstraction we obtain something like this:
1Here, we used the following notation: For a set S, the set of all subsets with i elements

is denoted by Pi(S). Thus, an edge can have either one or two distinct endpoints.

2

a

b

c

d

e

f

g
3 4

1

2

In modern language we have V = {1, 2, 3, 4}, E = {a, b, ..., g} and

ι(a) = ι(b) = {1, 3}, ι(c) = ι(d) = {2, 3}
ι(e) = {1, 4}, ι(f) = {2, 4}, ι(g) = {3, 4},

although more often than not specifying a graph by a picture is more con-
venient (note though that the graph merely captures the combinatorial
information of which edges have which endpoints – a drawing necessarily
contains a lot more information. More on that next lecture!).

The definition above explicitly allows ι(e) = {v} for some e ∈ E, v ∈ V –
thus, an edge might connect a vertex to itself. In this case, we say that the
edge is a loop. Perhaps more relevant to the bridges of Königsberg, we say
that two edges e, e′ ∈ E are parallel if ι(e) = ι(e′). The two endpoints of a
common edge are called adjacent or neighbours. We also sometimes say that
a vertex v is incident to an edge e, by which we mean that v is an endpoint
of e. Finally, a graph is finite if |V |+ |E| <∞.

Having succesfully encoded the topography of Königsberg into a mathematical
structure, how do we proceed with the notion of a city tour?

Definition 2. Let G = (V,E, ι) be a graph. A walk of length k is a
sequence v0e1v1e2v2...ekvk where e1, ..., ek ∈ E and v0, v1, ..., vk ∈ V , such
that ι(ei) = {vi−1, vi} for all i = 1, ..., k. A trail is a walk that uses no edge
twice. A path is a walk that uses no vertex twice.

Moreover, a circuit is a trail where the first and last vertex coincide, and a
cycle is a circuit where those vertices are the only one coinciding.

Thus every path is a trail, and every cycle is a circuit, but the converse is
not true.

Definition 3. A trail that uses every edge in the graph exactly once is called
an Eulerian trail. Analogously, a circuit using every edge exactly once is
called an Eulerian circuit (or Euler tour). If a graph admits an Eulerian
circuit, it is simply called Eulerian.

Hence, we are specifically interested in whether or not the graph we obtained
earlier for Königsberg admits an Eulerian trail (or even an Eulerian circuit).

3

However, our answer will be in form of a general characterisation of such
graphs, for which we need yet another two concepts:

Definition 4. Let G = (V,E, ι) be a graph. A vertex x is connected to a
vertex y if there is a walk (equivalently, a trail or a path) starting in x and
ending in y. If this is satisfied for all x, y ∈ V , then we say G is connected.

Remark 5. Every vertex is connected to itself via a “lazy” walk using no edges
at all. It thus follows that connectedness is an equivalence relation on V , and
the equivalence classes are called the (connected) components of G.

Definition 6. Let G = (V,E, ι) be a graph and v ∈ V a vertex. The degree
deg(v) is the number of edges v is incident to, with loops counted twice.

For example, in this graph, deg(1) = 3,deg(2) = 5, and deg(3) = 2:

1 2

3

Let us now (as Euler did 286 years ago) imagine a connected graph with an
Eulerian circuit. As we traverse along that circuit, we have to leave every
visited vertex by a different edge than we entered (even if we have loops!).
Hence, the degree of every vertex must be even. This is the first implication
in the following theorem:

Theorem 7 (Euler, 1736). A finite connected graph is Eulerian if and only
if all its vertex degrees are even.

Proof. We already showed the easy direction, so assume now thatG = (V,E, ι)
is a finite connected graph with only even vertex degrees. To simplify the
argument, assume also that the graph contains no loops. Consider a trail
T = v0e1v1e2v2...ekvk of maximal length (i.e. such that no edge is used twice,
and such that there is no strictly longer trail in G). Since this trail cannot be
extended by an additional edge at vk, all edges incident to vk must already
be in T . We now show that this implies v0 = vk.

Assume that there are 2s (s ∈ N) edges incident to vk. One of those edges is
required to be ek. Where do the other 2s− 1 go? If vk occurs as an internal
vertex of T , that is, say vj = vk for 1 ≤ j < k, then ej and ej+1 must both
be edges incident to vk. Thus, any internal occurence of vk takes up 2 edges
(We are really using here that there are no self-loops). This explains where

4

2s− 2 of the edges at vk go, leaving one edge – and that one has to go out of
v0 to v1 6= vk. Hence v0 = vk, and the trail T is really a circuit.

Next, we prove that this trail T is Eulerian: Assume for a contradiction
that it wasn’t. Then there is an edge e, say with endpoints ι(e) = {x, y},
that is not on T , but one of its endpoints, say x ∈ V , is – this follows from
connectedness. Hence, x occurs in some position on T , say x = vi. Now
consider the following trail:

T ′ := yexei+1vi+1...ekvke1v1...eivi.

This is indeed a trail, since e was not on T , and it contains k + 1 edges,
contradicting the assumption that T is of maximal length. Therefore T is
the desired Eulerian trail.

Finally, what happens if G contains loops? Simply cut off the loops (this
doesn’t change the connectedness or the parity of the degrees by Definition
6) and consider the Eulerian trail T obtained from the proof in the loop-less
case. Now walk alongside T . As T necessarily passes through all vertices in
the graph, stop whenever you reach a vertex for the first time, and traverse
all loops at that vertex, before continuing with T .

We also have the following corollary:

Corollary 8. A finite connected graph admits an Eulerian trail if and only
if either 0 or 2 of its vertices have odd degree.

Proof. If all vertices have even degree, there is nothing left to show. Otherwise,
introduce a new edge connecting the two vertices with odd degree. In the
modified graph, all degrees are even, hence there is an Eulerian circuit.
Removing the newly inserted edge from the circuit turns it into an Eulerian
trail.

Conversely, if a graph admits an Eulerian trail that is closed, i.e. a circuit,
we simply apply the theorem. Otherwise, such an Eulerian trail must have a
starting and an ending vertex both having odd degree.

In particular, the bridges of Königsberg did not allow for walking through the
city along an Eulerian trail, as all four vertices in the corresponding graph
have odd degree. (If you’re curious, check out Kaliningrad on google maps to
see whether it’s possible nowadays).

Corollary 8 might raise the question “What happens if a graph has exactly
one vertex of odd degree?” – as it turns out, this can’t happen:

Lemma 9 (Handshake lemma). Let G = (V,E, ι) be a finite graph. Then

2|E| =
∑
v∈V

deg(v) (1)

5

In particular, G must contain an even number of vertices of odd degree.

Proof. We use a trick called double counting : On the one hand, every edge
contributes two half-edges, thus there are 2|E| half-edges in total. On the
other hand, every vertex contributes deg(v) half-edges by definition, and thus
both sides of equation (1) count the same quantity.

Food for thought: If G = (V,E, ι) is a connected graph with 4 vertices
of odd degree, can we always partition the edge set as E = E1] E2 such
that (V,E1, ι|E1) and (V,E2, ι|E2) admit Eulerian trails? In other words, is it
possible to colour every edge either red or blue such that the graph with red
edges and the graph with blue edges each contain an Eulerian trail? What if
we have 2k vertices of odd degree (for k ≥ 2)?

6

Lecture 2 Simple graphs and subgraphs

For the bridges of Königsberg problem last lecture, we considered multigraphs,
as the relevant information was how the landmasses are connected with each
other. However, often in applications it is only relevant if vertices are
neighbours to each other. To illustrate this, consider the Towers of Hanoi
(Here, n disks of descending sizes are stacked on one of three pegs. The aim
is to move the entire stack to another peg, by only moving one disk at a
time. Moreover, smaller disks have to go on top of larger disks). While it
is relatively easy to solve the Towers of Hanoi, more interesting questions
(such as the fastest solve path) require a better framework for analysis. In
this case, we can label the pegs by 1,2,3, and encode any state by a unique
string of length n over the digits {1, 2, 3} (where the first digit gives the
position of the largest disk, . . . , and the last digit indicates the position of
the smallest disk). Moreover, the allowed moves (all of them are reversible)
induce a graph structure on the set of those strings by connecting two strings
if the corresponding states can be transformed by a single move, giving rise
to the Hanoi graph Hn (here shown for n = 3):

111 112 132 133 233 231 221 222

113 131 232 223

123 121 212 213

122 211

322 323 313 311

321 312

331 332

333

In other words, we’re often in a situation where multiple edges or loops don’t
matter, so we could ignore them.

Definition 10. A simple graph is a multigraph without double edges or
loops. Equivalently, it is a pair G = (V,E) where E ⊆ P2(V).

Let’s discuss this definition: A multigraph G = (V,E, ι) has no double edges
or loops iff the incidence map ι sends no edge to a single-vertex set, and

7

doesn’t send any two edges to the same set of vertices. Hence, a graph
is simple iff ι is an injective map E → P2(V). But in that case, we can
directly identify an edge e with its image ι(e), so we can just as well assume
E ⊆ P2(V).

Since every simple graph is a multigraph, everything we did in the last
lecture also applies to simple graphs, and we will use the same terminology
as introduced then.

Most of the remaining lectures will be concerned with simple graphs, but we
will occasionally require multigraphs as well. One of the great mathematical
benefits of simple graphs is that they are a much more restricted class of
graphs, allowing us to make statements such as:

Lemma 11. Any simple graph on n vertices has at most
(
n
2

)
edges.

Proof. There are
(
n
2

)
different 2-element subsets of V , hence |E| ≤

(
n
2

)
.

From this lemma, one might suspect that there exist only a finite number
of different simple graphs on n vertices. This is true, but depends on what
we mean by “different” – graphs (V,E) and (V ′, E′) might “look the same”,
but be different according to definition simply because the sets V and V ′

are not the same. There are two ways to circumvent this - one by fixing the
underlying vertex set, leading to labelled graphs, the other by formalising
what is meant by “looking the same”, leading to the notion of isomorphic
graphs.

Definition 12. A labelled graph is a graph with a fixed vertex set, commonly
(if V is finite) V = {1, 2, ..., n}.

Corollary 13. There are 2(n2) different labelled graphs on n vertices.

Proof. Since V = {1, ..., n} is fixed, graphs on this vertex set are the same
iff their edge sets E ⊆ P2(V) coincide. Conversely, any subset E ⊆ P2(V)
defines a labelled graph on V . Thus, the labelled graphs on n vertices are in
bijection with the power set of P2(V), hence there are 2(n2) of them.

Definition 14. Let G = (V,E) and G′ = (V ′, E′) be simple graphs. A
morphism ϕ : G → G′ of simple graphs is a map ϕ : V → V ′ such that
{ϕ(v), ϕ(w)} ∈ E′ whenever {v, w} ∈ E.

Warning: This notion of graph morphisms is only viable for simple graphs.
While it is possible to define graph morphisms for multigraphs as well, the
definition is considerably different.

Observe that every simple graph G = (V,E) comes with an identity morphism
idG: Indeed, the map id : V → V which sends every vertex to itself satisfies

8

the condition in Definition 14. Moreover, if G,G′, G′′ are simple graphs with
vertex sets V, V ′, V ′′ respectively, and ϕ : G → G′ and ϕ′ : G′ → G′′ are
morphisms, then there is a morphism ϕ′ ◦ ϕ : G → G′′ given by the map
ϕ′ ◦ ϕ : V → V ′′. (The students knowing what a category is might now
verify that simple graphs with morphisms do indeed form a category, all other
students don’t need to care as it will play no further role in this course).

Example 15. Here is an example of a graph morphism, the dashed arrow
indicating which vertices in the left graph are sent to which vertices on the
right:

Definition 16. Two simple graphs G,G′ as above are isomorphic if there is
a morphism ϕ : G→ G′ and a morphism ψ : G′ → G such that ϕ ◦ ψ = idG′

and ψ ◦ ϕ = idG. In this case, we call ϕ an isomorphism.

It follows from this definition that a morphism ϕ is an isomorphism if and
only if it is a bijection on vertices, such that additionally {ϕ(v), ϕ(w)} ∈ e′ if
and only if {v, w} ∈ E.

Being isomorphic provides an equivalence relation on the class of all simple
graphs, and we will not always distinguish rigorously between an isomorphism
class (i.e. an equivalence class under this relation) and a graph. So, a
statement like “G contains a copy of G′” will mean: “G contains a graph
isomorphic to G′”.

Observe that graph-theoretic notions are typically invariant under isomor-
phisms, this includes e.g. vertex degrees, connectedness, Eulerianity, and
many more we have yet to encounter.

Example 17. To further illustrate the point of isomorphic graphs, here is the
complete list of 11 non-isomorphic graphs on 4 vertices:

9

As we can see, the number of non-isomorphic graphs on 4 vertices (11) is
different from the number of labelled graphs on 4 vertices, which is 2(42) = 64.
For example, the following two graphs are isomorphic, but different as labelled
graphs:

2

1

3

4

2

4

3

1

There is no exact formula for the number gn of non-isomorphic graphs on n
vertices, however there are asymptotic expansions, like the following, where
we write f(n) ∼ g(n) to express limn→∞ f(n)/g(n) = 1.

Theorem 18. The number gn satisfies

gn =
2(n2)

n!

(
1 +

n2 − n
2n−1

+O

(
n3

23n/2

))
.

In particular, gn ∼ 2(n2)/n!.

10

Let us turn our attention towards special graphs, that is, isomorphism classes
of graphs that turn up very often:

• The complete graphs on n vertices, denoted Kn: Those are the graphs
containing all

(
n
2

)
potential edges.

• The path graphs of length `, denoted P`: If we label the vertices by
0, 1, ..., ` from left to right, our edges are precisely of the form {i− 1, i}
for all i = 1, ..., `.

• The cycle graphs on n vertices, denoted Cn: This is a path of length
n− 1 with an additional edge joining the first and last vertex.

• The complete bipartite graphs on a + b vertices, denoted Ka,b: This
graph’s vertex set is partitioned into two disjoint sets, V = V1] V2,
where |V1| = a and |V2| = b. There are no edges between two vertices
both belonging to the same set of the partition, but all possible edges
between V1 and V2.

• The complete multipartite graphs Ka1,...,ar : Fix r ∈ N, and for a given
number of vertices n choose r positive integers a1, . . . , ar such that
a1 + · · · + ar = n. The graph’s vertex set is a partition V =

⊎r
i=1 Vi

with |Vi| = ai, where two vertices are neighbours iff they belong to
different sets of this partition. For r = 2, we get the complete bipartite
graphs, for r = n we get the complete graph on n vertices.

The figure above shows, from left to right, K6, P3, C5 and K2,3.

Proposition 19. The complete multipartite graph Ka1,...,ar on n vertices has
1
2

(
n2 − a2

1 − · · · − a2
r

)
edges.

Proof. We use the handshaking lemma (Lemma 9) from Lecture 1. Since a
vertex in Vi has one edge to every vertex not in Vi, it has degree n− ai, and
there are ai such vertices. Hence,

2|E| =
r∑
i=1

ai(n− ai) = n
r∑
i=1

ai −
r∑
i=1

a2
i = n2 −

r∑
i=1

a2
i ,

proving the claim.

11

In particular, Ka,b has 1
2(n2 − a2 − b2) = ab edges, and Kn = K1,...,1 has

1
2(n2 − n) =

(
n
2

)
edges.

Let us now introduce the important concept of subgraphs:

Definition 20. Let G = (V,E) be a simple graph. A simple graph H =
(V ′, E′) is a subgraph of G if V ′ ⊆ V and E′ ⊆ E. An induced subgraph is a
subgraph H = (V ′, E′) of G such that E′ = {{x, y} ∈ E : x, y ∈ V ′}.

Several remarks are necessary for the proper appreciation of this definition:

Remark 21. The definition requires H to be a graph in its own right. It is
thus not good enough to choose any subsets V ′ ⊆ V and E′ ⊆ E to obtain a
subgraph; one has to make sure these choices are compatible: including an
edge in E′ requires that its endpoints are included in V ′.

Remark 22. By definition of an induced subgraph H, it is enough to choose
V ′, since then the edge set off H must contain all edges in G with both their
endpoints in V ′. For this reason, we will also write G[V ′] for the subgraph
induced by V ′.

Remark 23. The notion of (induced) subgraphs extends to multigraphs in
intuitively the same meaning, but for a formal definition, one has to make
sure that the edges are incident to the same vertices in both graphs. That
is, for H = (V ′, E′, ι′) to be a sub-multigraph of G = (V,E, ι), we have
to require that H is a multigrah, that V ′ ⊆ V and E′ ⊆ E, but also that
ι′ = ι|E .

What we introduced above as induced subgraph is sometimes called the
vertex-induced subgraph. Indeed, there is the dual-notion of the edge-induced
subgraph:

Definition 24. Let G = (V,E) be a simple graph, E′ ⊆ E a subset. The
edge-induced subgraph G 〈E′〉 is the subgraph (V ′, E′) where V ′ := {v ∈ V :
v is incident to some e ∈ E′}.

Finally, the subgraphs that include the entire vertex set of the host graph
are often of special interest and therefore deserve a name of their own:

Definition 25. A subgraph H = (V ′, E′) of G = (V,E) is called spanning
subgraph if V = V ′.

The same definition applies when G or G and H are multigraphs. If G is a
simple graph, then the only subgraph of G that is both spanning and induced
is G itself. It follows that a spanning subgraph H of G is uniquely determined
by the choice of the set E′ ⊆ E, hence G has 2|E| spanning subgraphs.

12

Lecture 3 Trees

Definition 26. A tree is a graph T = (V,E) that is both connected and
contains no cycles.

Observe how in a multigraph, any loops or parallel edges introduce cycles
immediately, so restricting the definition to simple graphs makes no difference.

Trees occur everywhere! As an example, consider QuickSort, an algorithm
sorting a list of numbers into the correct (say, ascending) order. The algorithm
works as follows:

1. Fix an arbitrary pivot element from the list.

2. Compare all non-pivot elements a with the pivot, and if the pivot is
larger, move a to the left of the pivot; but if the pivot is smaller, move
a to the right of the pivot. (After this step, at least the pivot element
will be in its correct position, but the lists to its left and right might
not be).

3. Repeat steps 1 and 2 for both sublists to either side of the pivot.

Example 27. Consider the list (3, 7, 1, 4, 9, 8, 6, 2, 5), and let’s choose 7 as our
pivot element. After rearranging, the list might look like

(3, 1, 4, 6, 2, 5, 7, 9, 8)

– this depends on how exactly the partitioning step is implemented. Now,
the 7 is in correct position, and we are left to sort (3, 1, 4, 6, 2, 5) and (9, 8)
independently of each other, and might choose 3 and 8 as pivots for the left
and right part, respectively. After rearranging with respect to the pivots, we
could then end up with

(1, 2, 3, 4, 6, 5, 7, 8, 9)

and it only remains to sort the part to the right of 3 and to the left of
7, so (4, 6, 5). Let’s pick 5 as the pivot element, and obtain (4, 5, 6) after
rearranging, which sorts the list as required.

We might also choose to represent the algorithm in a more picturesque way:

13

8

9

7

1

2

3

4

5

6

As you can see, the final result is a labelled tree (with some additional
properties, like the choice of a root node, and an orientation between left and
right children, but we will choose to ignore this).

Lemma 28. Every finite tree with at least 2 vertices contains at least two
vertices of degree 1. Such vertices are called leaves.

Proof. Let T be a finite tree on at least 2 vertices. Consider a path P =
xe1x1e2 . . . y of maximum length in T . This path begins with a vertex x, and
ends with a different vertex y. Assume that one of x, y (w.l.o.g. x) has degree
at least 2. Thus x has a neighbour w different from x1. If w is not contained
in P , then the path going from w to x and then via P to y is strictly longer
than P , contradicting the maximality of P . Hence, w is in P , but then T
contains a cycle: Starting at x, follow along P until w, then go back to x via
the edge {x,w}.
From this contradiction, we conclude deg(x) = deg(y) = 1.

Proposition 29. Any tree on n vertices has n− 1 edges.

Proof. We use induction over the number of vertices. There is exactly one
tree (up to isomorphism) consisting of exactly one vertex, •, and it contains
no edges. Now, assume that the statement is true for all trees on n ≥ 1
vertices, and consider an arbitrary tree T = (V,E) on n + 1 vertices. By
Lemma 28, there is a vertex x in T with deg(x) = 1 (so, it has a unique
neighbour which we will call y). Remove x from T by considering the induced
subgraph T ′ := T [V \ {x}]. This removes exactly the vertex x and the edge
{x, y} from T . Then T ′ has n vertices and therefore n− 1 edges, so T had
n+ 1 vertices and n edges, as required.

Theorem 30 (Cayley). There are nn−2 labelled trees on n vertices.

Proof. We will provide a bijection between labelled trees on n vertices and
sequences of labels of length n− 2, so called Prüfer sequences. This bijection

14

will take the form of two algorithms, one to convert a tree into a sequence,
the other to get the tree back from the sequence. Since there are nn−2 Prüfer
sequences, this will prove the theorem. To avoid the annoying small cases,
assume n ≥ 2.

Algorithm 1. Let T be a tree on n vertices, with labels {1, . . . , n}. As long
as T has at least 3 vertices, remove the leaf with the smallest label and write
down the label of its (unique!) neighbour as the next term in the sequence.
Stop when there are only 2 vertices in T left.

Algorithm 2. Let A = (a1, . . . , an−2) be a sequence of numbers as ∈ 1, . . . , n
for s ∈ 1, . . . , n− 2. To each i = 1, . . . , n, let di be one plus the number of
times i occurs in the Prüfer sequence A. Now, for s from 1 to n− 2, find the
smallest j ∈ {1, . . . , n} such that dj = 1 (and therefore automatically also
j 6= as), draw an edge between as and j, and reduce das and dj by 1 each.
In the end, exactly two vertices u, v ∈ {1, . . . , n} remain with du, dv > 0 (in
fact, du = dv = 1), and we connect u and v with one last edge.

To conclude the proof it is necessary to show that applying algorithm 1 and
then algorithm 2 to a labelled tree T returns this labelled tree, and that
applying algorithm 2 and then algorithm 1 to a Prüfer sequence will return
the sequence. This will be done in the exercises.

Example 31. The tree we obtained from the introductory example has Prüfer
sequence (1, 3, 5, 5, 3, 7, 8).

Theorem 32 (Characterisation of trees). The following statements are equi-
valent:

(1) T is a tree.

(2) For any two vertices x, y of T there exists a unique path connecting x
and y.

(3) T is edge-minimal among connected graphs, i.e. removing any edge from
T creates at least two connected components.

(4) T is edge-maximal among cycle-free graphs, i.e. adding an edge between
two non-neighbouring vertices introduces a cycle.

Proof. Let T = (V,E) be a simple graph. We will show the following
implications:

15

(3)

(1) (2) (1)

(4)

(1) =⇒ (2): Assume T is a tree, x, y ∈ V . Since T is connected, there is at
least one path from x to y. If there was more than one path, the union of
two of those paths would create a cycle in T . Hence, the path is unique.

(2) =⇒ (3): Consider any edge {x, y} ∈ E. By (2), this edge is the
unique path from x to y, hence removing it creates one connected component
containing x and one containings y.

(2) =⇒ (4): Consider two non-neighbouring vertices x, y ∈ V . By (2), there
is a unique path in T from x to y. Hence, introducing the new edge {x, y}
creates a cycle (by concatenating the path from x to y with the new edge).

(3) =⇒ (1): If T is edge-minimal among connected graphs, then T is in
particular connected. Assume now that T were to contain a cycle. Deleting
any edge on this cycle would not disconnect T , contradicting edge-minimality.
Hence T is a tree.

(4) =⇒ (1): By assumption (4), T is cycle-free. Assume that T is discon-
nected, then adding an edge between two differend connected components
does not introduce a cycle, contradicting edge-maximality. Hence T is a
tree.

Recall from last lecture that given a graph G, a spanning subgraph of G is a
subgraph containing all vertices of G.

Definition 33. Let G be a graph (simple or multi-). A spanning tree of G
is a spanning subgraph that is also a tree.

Example 34. The following graph contains a spanning tree whose edges are
marked in red:

If the host graph G is disconnected, then any spanning subgraph must be
disconnected as well, so there can be no spanning trees of G. The following

16

theorem shows that the obviously necessary condition of connectivity is also
sufficient:

Theorem 35. Let G be a connected (multi-)graph. Then G contains a
spanning tree.

The existence of spanning trees for finite connected G is a straightforward
consequence of Theorem 32 – if G is finite, there have to be edge-minimal
connected and edge-maximal cycle-free subgraphs! For infinite graphs, the
situation is less clear, and in fact Theorem 35 is equivalent to the axiom of
choice. We will give a proof relying on Zorn’s lemma (itself equivalent to the
axiom of choice).

Theorem 36 (Zorn’s lemma). Let (A,≤) be a non-empty partially ordered
set. A subset C ⊆ A is a chain if for any two elements c, c′ ∈ C, we either
have c ≤ c′ or c′ ≤ c. Assume that for every chain C in A there exists an
upper bound b ∈ A (i.e. c ≤ b for all c ∈ C). Then, there exists m ∈ A with
m ≤ a =⇒ m = a.

For our purposes, let A be the set of all cycle-free spanning subgraphs H of
G = (V,E, ι), and for H,H ′ ∈ A, define H ≤ H ′ if H is a subgraph of H ′.
This gives (A,≤) the structure of a partially ordered set. Furthermore, A is
non-empty since H = (V, ∅) is spanning and cycle-free. Let C be a chain in
A, consisting of elements Hi = (V,Ei) for i ∈ I. Define Hb := (V,

⋃
i∈I Ei).

We want to show that Hb is an upper bound for C.

By construction, Hb is a spanning subgraph of G. Assume it contains a
cycle consisting of edges e1, . . . , er. Then, for every ` = 1, . . . , r there is
an Hi(`) that contains e` in C. Since C is a chain, one of the graphs Hi(`)

– say, for ` = j – contains all of the other graphs for different values of `.
Hence, Hi(j) must contain the cycle e1, . . . , er. This is a contradiction, since
Hi(j) ∈ C ⊆ A must be cycle-free. Hence Hb is cycle-free, and Hb ∈ A.
Finally, since Ei ⊆

⋃
i∈I Ei, we have Hi ≤ H for all Hi ∈ C.

But now all the assumptions of Zorn’s lemma are satisfied! Hence there must
be a maximal (with respect to ≤, i.e. edge-maximal) cycle-free spanning
subgraph H of G, and by Theorem 32, (4), this H is a spanning tree.

17

Lecture 4 Counting spanning trees

We begin with a definition:

Definition 37. Let G be a labelled graph. The complexity of G is the
number of spanning trees of G, denoted t(G).

As a first example, note that a labelled tree on n vertices can equivalently be
considered a spanning tree of a labelled Kn, so Cayley’s theorem immediately
yields t(Kn) = nn−2.

In this lecture, we want to obtain one of the classical combinatorial theorems
in graph theory, answering the question: Given a labelled, connected, simple
graph G, how many spanning trees does G have? To provide an answer to
this question, we will develop some of the basic language in algebraic graph
theory.

Let us begin by introducing two ways of encoding a graph algebraically. For
the entire lecture, we will assume that G = (V,E) is a simple graph with a
finite labelled vertex set {1, . . . , n} and an edge set {e1, . . . , em}.

Definition 38. The adjacency matrix A of a graph G is the n× n-matrix
having entries Aij = 1 if i and j are neighbours, and Aij = 0 otherwise.

Example 39. For example, the graph

1

23

4

5 6

has adjacency matrix 

0 1 0 1 1 1
1 0 1 0 1 0
0 1 0 1 1 0
1 0 1 0 1 0
1 1 1 1 0 1
1 0 0 0 1 0

 .

Observe that, since “being neighbours” is a symmetric relation on vertices,
the matrix A is symmetric. Moreover, no vertex is a neighbour to itself, so
all diagonal entries of A vanish. Finally, it follows from the spectral theorem
for symmetric matrices that all eigenvalues of A are real.

18

There is another important way to capture the relevant information about a
simple graph in a matrix; however, it turns out to be more useful to orient
the edges for this: So, for every edge e1, . . . , em, designate one of its endpoint
as the positive end, and the other as the negative end. Of course, we will
later on have to make sure that whatever we say about a graph does not
depend on the chosen orientation!

Definition 40. The incidence matrix D of a graph G with a fixed orientation
is the n×m-matrix having entries Dij (1 ≤ i ≤ n, 1 ≤ j ≤ m), where

Dij =


1 if i is the positive end of vj
−1 if i is the negative end of vj
0 otherwise

Example 41. The matrix

1 0 0 0 0 −1 1 1 0 0
−1 1 0 0 0 0 0 0 1 0
0 −1 1 0 0 0 0 0 0 1
0 0 −1 1 0 0 −1 0 0 0
0 0 0 −1 1 0 0 −1 −1 −1
0 0 0 0 −1 1 0 0 0 0


is one possible incidence matrix for the graph G from Example 39. The edges
were ordered in the folllowing way:

{1, 2}, {2, 3}, {3, 4}, {4, 5}, {5, 6}, {6, 1}, {1, 4}, {1, 5}, {2, 5}, {3, 5}.

The following lemma collects several useful properties of the incidence matrix:

Lemma 42. Let D be the incidence matrix of a finite simple graph G. Then:

(i) The sum of any column of D is zero, hence rankD ≤ n− 1.

(ii) If G is connected, then rankD = n− 1.

(iii) If G has c components, then rankD = n− c.

Proof. The column sum of D is zero since in any column, there is exactly one
entry 1 and one entry −1, representing the positive and negative endpoint
of the edge to which the column is associated. Hence, taking the sum of all
row-vectors in D is a non-trivial linear combination of 0, hence rankD ≤ n−1.

To show part (ii), we show that this is (up to scaling) the only non-trivial
linear combination of 0 with row-vectors. So, let ri for i = 1, . . . , n denote
the row-vectors of D, and suppose we have a non-trivial linear combination∑n

i=1 αiri = 0. Consider a row k for which αk 6= 0. In this row, there is

19

a non-zero entry in every column corresponding to an edge incident with
the vertex k. For each of these columns, there is exactly one other row (say,
r`) with a non-zero entry in that column, and the two entries will be of
opposite signs. But, for our linear combination to yield zero, we thus require
α` = αk. Hence we just proved that if αk 6= 0, then α` = αk for all ` which
are neighbours to k. But if G is connected, this argument extends to all of
G, hence the linear combination is a scalar multiple of

∑n
i=1 ri = 0. Thus,

rankD = n− 1.

For part (iii), observe that it is possible to re-label the vertex and edge sets
in such a way that D is in block-diagonal form, with every block being the
incidence matrix of a connected component. The claim then follows from
(ii).

Lemma 43. Any square submatrix of an incidence matrix D has determinant
0, 1, or −1.

Proof. This is obviously true for sqare submatrices of size 1 × 1. Assume
that it holds true for submatrices of size k × k, and consider (if possible
within D) a square submatrix M of size (k+ 1)× (k+ 1). If every column of
M has either two or no non-zero entries, then detM = 0 (in the first case,
every column sums to 0, in the second case M = 0). Otherwise, there’s a
column of M having exactly one non-zero entry. Expanding M along this
column yields detM = ±detM ′ where M ′ is a k× k-submatrix of D. Hence
detM ∈ {−1, 0, 1}.

Observe also the following curious fact about D: If S ⊆ E is a set of edges
from G, and DS denotes the matrix consisting of exactly those columns that
correspond to edges in S, then DS is the incidence matrix of the spanning
subgraph (V, S) of G. In particular, if S contains exactly n−1 edges, then by
part (iii) in the previous lemma DS has rank n−1 iff (V, S) is a spanning tree
of G. The following proposition shows that this is in fact a characterisation
of spanning trees:

Proposition 44. Let S ⊆ E with |S| = n− 1. Let M denote any (n− 1)×
(n− 1)-submatrix of the n× (n− 1)-matrix DS. Then M is a regular matrix
iff (V, S) is a spanning tree of G.

Proof. We have already observed that DS has rank n − 1 whenever (V, S)
is a spanning tree. In that case, removing any row from DS will create a
non-singular square matrix M .

Conversely, if M is non-singular, then DS contains at least n − 1 linearly
independent rows and the same number of linearly independent columns.
Hence rankDS = n−1 and (V, S) must be connected. But a connected graph
on n vertices and n− 1 edges must be a tree.

20

Lemma 45. Let G be a finite simple graph. Denote by A its adjacency
matrix and by D its incidence matrix (with respect to some fixed orientation).
Let ∆ be a diagonal n× n-matrix having diagonal entries ∆ii = deg(i) for
1 ≤ i ≤ n. Then,

DDt = ∆−A
and this matrix is called the Laplacian matrix of G. In particular, DDt is
independent from the chosen orientation on G.

Proof. The entry (DDt)ij is the Euclidean inner product of rows ri and rj of
D. If i = j, this amounts to summing up the squares of the entries in ri. As
observed in the proof of the previous lemma, the non-zero entries in ri are
±1, and there are deg(i)-many of them. Hence (DDt)ii = deg(i) = (∆−A)ii.
For i 6= j, the rows ri and rj have a non-zero entry in the same column iff
this column corresponds to an edge {i, j} (and there can be at most one such
edge). In that case, the scalar product evaluates ri · rj = (+1)(−1) = −1,
since the entries in this column must be of opposite signs. Hence

(DDt)ij = −1 = (∆−A)ij

if {i, j} is an edge, and

(DDt)ij = 0 = (∆−A)ij

if {i, j} is not an edge.

Recall that a cofactor Mij of a square-matrix M is the determinant of a
submatrix for which one row (row i) and one column (column j) have been
removed. The transpose of the matrix containing all those cofactors as its
entry is called the adjugate matrix of M , denoted adjM .

Lemma 46. Let Q = DDt = ∆−A be the Laplacian matrix of G. Denote
by J the n × n-matrix all of whose entries are 1. Then adjQ is a scalar
multiple of J .

Proof. We observe first that rankQ = rankD. If G is disconnected, then by
Lemma 42, rankQ < n− 1, so all cofactors will vanish, and adjQ = 0.

If G is connected, we have rankQ = n− 1. We know from linear algebra that
Q(adjQ) = (detQ)In, and the right-hand side is 0 since Q does not have full
rank. So, Q(adjQ) = 0, which implies that every column vector of adjQ is in
the kernel of Q. This kernel, however, is one-dimensional by rankQ = n− 1,
and spanned by (1, . . . , 1)t: Indeed, taking the inner product between the
i-th row of Q = ∆−A and (1, . . . , 1)t gives deg(i)−∑j∼i 1 = 0, where the
sum ranges over all neighbours j of i. It follows that every column of adjQ
is a scalar multiple of (1, . . . , 1)t. As Q is symmetric, adjQ is as well, and all
those scalar multiples have to be the same!

21

We are now finally ready to state (and prove) the following theorem:

Theorem 47 (Kirchhoff’s matrix-tree-theorem). Let G be a finite simple
graph having Laplacian matrix Q. Then adjQ = t(G)J . In other words, the
number of spanning trees in G coincides with any cofactor of Q.

Equivalently, if λ1, . . . , λn−1 are the non-zero eigenvalues of Q, then

t(G) =
1

n
λ1 · · ·λn.

The prove relies on mostly on the theory developed so far, but also on the
following advanced theorem from linear algebra. To state it, assume that A is
an n×m-matrix with n ≤ m. Then (analogously to incidence matrices) for
S = {s1, . . . , sn} ⊆ {1, . . . ,m}, we write AS to denote the n× n-submatrix
of A consisting of exactly the columns s1, . . . , sn.

Theorem 48 (Cauchy-Binet). Let A,B be two n×m-matrices, with n ≤ m.
Then,

det(ABt) =
∑

S⊆{1,...,m}
|S|=n

detAS detBS .

Proof of the matrix-tree-theorem. We know from Lemma 46 that all cofacters
coincide, so it is enough to focus on one particular cofactor. Let D be the
incidence matrix of G for a fixed orientation, delete its last row, and denote
by D̃ the obtained matrix. Then det(D̃D̃t) is a cofactor of Q = DDt, and
we can express this cofactor with the help of the Cauchy-Binet theorem:

det D̃D̃t =
∑
S⊆E

|S|=n−1

(det D̃S)2.

The summands on the right-hand side are either 0 or 1, according to Lemma 43,
and by Proposition 44 a summand is 1 iff (V, S) is a spanning tree of G. This
concludes the proof of the first part. The second part follows from general
statements about the characteristic polynomial of a matrix.

As an example, let’s verify Cayley’s formula once again: For G = Kn, we
have the Laplacian matrix

Q = ∆−A =


n− 1 −1 . . . −1

−1 n− 1
. . .

...
...

. −1
−1 . . . −1 n− 1



22

It can be verified directly that (1, . . . , 1)t is an eigenvector to the eigenvalue
0, and that each of the n− 1 vectors of the form (0, . . . , 0, 1,−1, 0, . . . , 0)t is
an eigenvector to the eigenvalue n. Hence

t(Kn) =
1

n
nn−1 = nn−2.

23

Lecture 5 Weights and distances

In the previous two lectures, we proved that in a connected graph G, spanning
trees exists, and found a way to count how many there are. The important
question left open is: How do we actually find one? As it turns out, we
can even answer this question in a more general setting, where we assume
that every edge in G comes at a certain cost (the weight of an edge), and
we want to find a spanning tree with minimal weight. Depending on the
application at hand, these weights might be distance, resistance, capacity,
For convenience, we will work with simple graphs (but everything is easily
generalised to multigraphs).

Definition 49. A weighted graph is a finite simple graph G = (V,E) together
with a weight function w : E → (0,∞). If H = (V ′, E′) is a subgraph of G,
then its weight is defined as w(H) :=

∑
e∈E′ w(e), the sum of the weights of

the edges in H. A minimum spanning tree (MST) is a spanning tree T of G
such that w(T) is minimal among all spanning trees of G.

For a connected weighted graph G, we know that there exist finitely many
spanning trees, and in particular, a minimum spannnig tree (albeit not
necessarily a unique one).

Lemma 50. Let G be a connected weighted graph. If w assigns a different
weight to every edge, the MST is unique.

Proof. Assume that w assigns a a different weight to every edge, and let
T1 = (V,E1), T2 = (V,E2) be two different minimum spanning trees. In
particular, E1 6= E2, and the set D, consisting of all the edges of G that
are in exactly one of T1 or T2, is nonempty. Pick e ∈ D with w(e) minimal.
W.l.o.g. e ∈ E1 and e 6∈ E2. Adding e to T2 creates a cycle, and somewhere
on this cycle there must be an edge e′ which is not in E1. Hence e′ ∈ D.
On the one hand, we now have w(e) < w(e′) by choice of e. On the other
hand, w(e′) ≤ w(e) as otherwise, T2 would not be an MST. This gives a
contradiction.

We will now proceed to present two famous algorithms for finding minimum
spanning trees:

Prim’s algorithm: Let G = (V,E) be a connected weighted graph. Set
T = ({v}, ∅) for any vertex v ∈ V . As long as T is not a spanning subgraph
of G, find an edge e of G between V (T) and V \ V (T) of minimal weight.
Add this edge together with its endpoint in V \ V (T) to T .

Example 51. Prim’s algorithm, applied to the graph

24

32

3
1 2

14

4

takes the following steps, after being initialized in the top middle vertex
(some steps have been executed simultaneously):

1 1

2

2

1

2

2

1

1

32

2

1

Theorem 52. Let G = (V,E) be a connected weighted graph with weight
function w. Prim’s algorithm generates a minimum spanning tree.

Proof. Prim’s algorithm generates a connected spanning subgraph T , and it
is inductively clear that T contains n − 1 edges for n = |V |. Hence T is a
spanning tree. To show that T is an MST, consider an MST T ′. We show
that w(T) ≤ w(T ′).

Suppose T 6= T ′. Consider the earliest edge e that belongs to T but not
to T ′, according to the order in which Prim’s algorithm added edges to T .
Partition the vertex set into two parts V1 and V2 (and V1] V2 = V) such
that T [V1] is the tree that Prim’s algorithm had constructed before adding e.
In particular, T [V1] is also a subgraph of T ′. Hence there must be an edge f
between V1 and V2 that occurs in T ′, and f 6= e. Transform T ′ by adding
the edge e and removing f for it. Since Prim’s algorithm chose e over f , we
have w(e) ≤ w(f), so this transformation did not increase w(T ′).

Now repeat this procedure until T = T ′, then w(T ′) ≥ w(T).

Remark 53. The runtime of Prim’s algorithm depends on the implementation,
specifically on how the graph is represented, and how one finds the next
edge between V (T) and V \ V (T). A good implementation has a runtime of
O(|E|+ |V | log |V |).

25

Kruskal’s algorithm: Let G = (V,E) be a connected weighted graph. Let
S be a list of edges of G, sorted in order of increasing weight. Let T = (V, ∅).
While T is disconnected, delete the first entry of S and add this edge to T
unless doing so creates a cycle.
Example 54. Kruskal’s algorithm, applied to the graph in Example 51, takes
the following steps (with edges of the same weight being added simultaneously,
if possible):

1

1

1

1

2

2 1

32

2

1

Theorem 55. Let G = (V,E) be a connected weighted graph with weight
function w. Kruskal’s algorithm generates a minimum spanning tree.

Proof. Kruskal’s algorithm generates a cycle-free spanning subgraph T that
is also edge-maximal, and hence a spanning tree. If T is not a minimum
spanning tree, let T ′ denote an MST that has the biggest possible number
of edges in common with T . We will construct another MST that has even
more edges in common with T to obtain a contradiction.

Let e be the earliest edge (according to Kruskal’s algorithm) in T that is
not contained in T ′. Adding e to T ′ creates a cycle, and somewhere on this
cycle there must be an edge f belonging to T ′ but not to T . Modifying T ′

by adding e and removing f yields another spanning tree T ′′. Since T ′ is
an MST, w(T ′) ≤ w(T ′′). However, since Kruskal’s algorithm included e
but not f , e must have come first in the ordered list S, hence w(e) ≤ w(f).
Therefore also w(T ′′) ≤ w(T ′). This is only possible if w(T ′) = w(T ′′), so
T ′′ is an MST. However, T ′′ has more edges in common with T than T ′ has,
which is the desired contradiction.

Kruskal’s algorithm has a runtime of O(|E| log |V |).
As mentioned above, we can interpret edge-weights as distances. This gives
rise to the following notion of distance in a graph:

Definition 56. Let G = (V,E) be a weighted graph with weight function
w : E → (0,∞). For vertices v, v′ ∈ V , we define the graph distance between

26

v and v′ via

dG(v, v′) = min

 ∑
e∈E(P)

w(e) : P is a path from v to v′


where we declare dG(v, v′) =∞ if no such path exists (i.e. if v, v′ are from
different connected components). This definition extends also to non-weighted
graphs by introducing the weight function w(e) = 1 for any edge e ∈ E.

As any reasonable notion of distance, graph distance satisfies the axiom of a
metric space, that is the following three properties:

Lemma 57. Let G = (V,E) be a connected, weighted graph.

(i) For all v, v′ ∈ V , we have dG(v, v′) ≥ 0. Moreover, dG(v, v′) = 0 iff
v = v′.

(ii) We have dG(v, v′) = dG(v′, v) for all v, v′ ∈ V .

(iii) The triangular inequality holds: dG(v, v′) + dG(v′, v′′) ≥ dG(v, v′′) for
all v, v′, v′′ ∈ V .

Proof. Statement (i) follows immediately from definition. If P is a path from
v to v′, then traversing P in the opposite direction is a path from v′ to v,
and (ii) follows.

To show the triangular inequality, let P be a path of length dG(v, v′) from
v to v′, and let Q be a path of length dG(v′, v′′) from v′ to v′′. Then by
concatenating P and Q (i.e. first traverse all of P , then all of Q) we obtain a
walk from v to v′′ of length dG(v, v′) +dG(v′, v′′). We obtain a path from v to
v′′ by erasing any cycles this walk may contain, and in doing so, the length can
only decrease. Hence there is a path of length at most dG(v, v′) + dG(v′, v′′),
which shows that dG(v, v′′) ≤ dG(v, v′) + dG(v′, v′′).

Definition 58. The diameter of a weighted graph G = (V,E) is the maxi-
mum distance between any pair of vertices, i.e.

diam(G) = max
{
dG(v, v′) : v, v′ ∈ V

}
.

Again, this definition extends to graphs without weight functions by setting
w(e) = 1 for any edge e ∈ E.

Given a weighted graph, how can we actually find the distances between
vertices? And how can we find the shortest paths, realising those distances?
Luckily there’s Dijkstra’s alogirthm. In the form stated here, it gives distances
from a selected starting vertex to all other vertices in the graph.

27

Dijkstra’s algorithm: Given a weighted graph G = (V,E), select an initial
vertex v0, and initialise a distance function d(v0, ·) by

d(v0, v) =

{
0 if v = v0

∞ if v 6= v0

Also define a set Q of unvisited vertices, which is initially defined to be
Q = V . To begin with, consider v0 to be the currently visited vertex. Now
proceed as follows:

1. Remove the currently visited vertex v from the set Q.

2. For all neighbours v′ of v in Q, check whether d(v0, v) + w({v, v′}) <
d(v0, v

′). If this is the case, then going through v to v′ provides a
shorter path from v0 to v′ than previously known; hence we update
d(v0, v

′) to be the smaller value d(v0, v) + w({(v, v′}). Otherwise, no
change to d(v0, ·) is needed.

3. Declare the new currently visited vertex to be the vertex v in Q with
the smallest value d(v0, v).

4. Repeat steps 1 - 3 until Q = ∅, then return the distance function
d(v0, ·).

Then, the returned distance function coincides with dG(v0, v).

Remark 59. Dijkstra’s algorithm can easily be modified:

• If only a certain distance dG(v, v′) is needed, run the algorithm with
v0 = v, but stop as soon as the currently visited vertex is v′.

• If the actual path realising dG is of interest, it is possible to modify
step 2 as follows: Suppose you have a currently visited vertex v with a
neighbour v′ in Q, and d(v0, v) + w({v, v′}) < d(v0, v

′). Additionally
to updating d(v0, v

′), assign to v′ the precursor vertex v. Updating
this precursor vertex together with d(v0, ·) enables us to backtrack the
shortest path after the algorithm has terminated.

Example 60. Here’s how Dijkstra’s algorithm runs on the graph from Ex-
ample 51, with vertices being labelled A,B, . . . , F from top left to bottom
right:

28

Step Current vertex d(A, ·)
A B C D E F

Init – 0 ∞ ∞ ∞ ∞ ∞
1 A 0 2 ∞ 3 ∞ ∞
2 B 0 2 5 3 6 4
3 D 0 2 5 3 6 4
4 F 0 2 5 3 5 4
5 C 0 2 5 3 5 4
6 E 0 2 5 3 5 4

With the right implementation, Dijkstra’s algorithm has a runtime of O(|E|+
|V | log |V |).

29

Lecture 6 Hamilton cycles

Recall from Definition 2 all the way back in Lecture 1, that a cycle in a graph
G is a sequence v0e1v1e2v2 . . . vk−1ekv0 such that all the vertices v0, . . . , vk−1

and all the edges e1, . . . , ek are distinct.

Definition 61. Let G = (V,E) be a finite simple graph. A Hamilton cycle
in G is a cycle that visits every vertex of G. If G admits a Hamilton cycle,
we also simply call G Hamiltonian.

Unlike with Eulerian circuits, where we could give a simple characterisation
which tells us whether a graph contains one or not, there is no such criterion
for hamiltonicity. In fact, the problem of determining whether a graph has a
Hamilton cycle is an NP-complete problem.

Deciding hamiltonicity of a graph is a special case of the travelling salesman
problem, where the task is to find a shortest/minimum weight Hamilton cycle
in a weighted graph. This is usually asked on a complete graph to ensure the
existence of Hamilton cycles, but this is unnecessary: one can simply draw
in all the missing edges and set their weight to infinity. Since finding the
shortest Hamilton cycle is (even intuitively) a harder task than determining
if there is one, the travelling salesman problem also belongs to the class of
NP-complete problems.

However, mathematicians have found sufficient conditions to guarantee the
existence of Hamilton cycles, and we will take a look into some of them:

Theorem 62 (Dirac 1952). Let G = (V,E) be a simple graph on n ≥ 3 ver-
tices, such that every vertex has degree at least n/2. Then G is Hamiltonian.

Proof. Assume G = (V,E) with |V | = n ≥ 3 and such that minv∈V deg(v) ≥
n/2. Such G cannot be disconnected, for if it were, vertices in the smallest
component would violate the degree condition.

Now consider a path P of maximum length, say P = v0e1v1e2v2 . . . vk−1ekvk.
This path, being maximal, contains all neighbours of v0 and all of vk. However,
by the degree condition, there are at least n such neighbours, hence there
must be an edge ei (between vi−1 and vi) such that vi is a neighbour of v0

and vi−1 is a neighbour of vk.

From this, construct a cycle C as follows: Starting in vi, traverse along P
all the way to vk, then take the edge connecting vk with vi−1. From there,
traverse backwards along P all the way to v0, and then complete the cycle
with the edge from v0 to vi.

It remains to show that C is indeed a Hamilton cycle: Assume C is not; then
(since G is connected) there exists a vertex v neighboured to a vertex on C
(say, to vj), but not itself on C. Construct a path P ′ by taking a spanning

30

tree (i.e. a path) of C having a leaf in vj , and prolong this path by adding
v together with {vj , v} to it. But now P ′ is a path strictly longer than P ,
which is a contradiction. Hence C is a Hamilton cycle.

Remark 63. The uniform lower bound on the minimal degree δ(G) =
minv∈V deg(v) is optimal, i.e. replacing n/2 by any smaller integer k al-
lows for counterexamples. Perhaps simplest is the following construction: Set
k := b(n − 1)/2c, and glue together two copies of Kk−1 by identifying one
vertex in one copy with a vertex in the other copy. This graph has minimum
degree k, but can not contain a Hamilton cycle (since removing the vertex
“in the middle” creates two components – an impossibilty for Hamiltonian
graphs!).

We immediately get the following generalisation of Dirac’s theorem:

Theorem 64 (Ore, 1960). Let G be a graph on n ≥ 3 vertices, such that for
any non-adjacent pair of vertices v, w, we have deg(v) + deg(w) ≥ n. Then
G is Hamiltonian.

Proof. The proof works in the same way as the proof for Dirac’s theorem.

Even more general is the Bondy-Chvátal theorem, which we will state next
(but we require a definition first).

Definition 65. Let G = (V,E) be a finite simple graph. The closure clos(G)
of G is defined as the result of the following procedure: For every pair of
non-adjacent vertices v, w, draw the edge {v, w} if deg(v)+deg(w) ≥ n. Stop
when there is no such pair anymore in the graph.

Example 66. If G is a graph on n vertices satisfying the conditions of Ore’s
theorem, then clos(G) = Kn.

Observe also how for the following graph, whose closure is K6, vertices 3 and
6 can only be connected by an edge after the first few edges were inserted:

31

1

23

4

5 6

Lemma 67. The closure of a graph does not depend on the order in which
the edges are inserted (and is thus well-defined).

Proof. Let G = (V,E) be a finite simple graph. Assume we construct the
closure of G in two different ways, where one way adds the edges e1, e2, . . . ek
to G (in this order), and the other way adds the edges f1, f2, . . . fk′ to G –
observe that not necessarily k = k′.

Then there is a smallest j s.t. ej 6= fj (otherwise, one of the sequences contains
the entire other sequence, which is impossible). Let Gj−1 be the graph
obtained by adding the edges e1 = f1, . . . , ej−1 = fj−1, and let ej = {v, w}.
Then, degGj−1

(v) + degGj−1
(w) ≥ n. Since those degrees will not decrease

when adding the next edges fj , . . . , eventually {v, w} will be inserted by some
f`. But then we can modify the sequence f1, f2, . . . , fk′ by inserting the edge
f` instead of fj , and inserting the edges fj , . . . f`−1 one step later. Now repeat
this modification procedure, until the sequences coincide completely.

Theorem 68 (Bondy-Chvátal, 1972). A graph G is Hamiltonian if and only
if clos(G) is.

Proof. Since G is a spanning subgraph of clos(G), the latter is Hamiltonian
if the former is.

For the other direction, assume we construct clos(G) from G by adding
edges e1, . . . ek, yielding graphs G1, . . . Gk−1, Gk = clos(G). If some Gj is
Hamiltonian, then all following graphs will be Hamiltonian as well. So assume
that for some j, Gj+1 is Hamiltonian, but Gj is not, and let ej+1 = {v, w}
be the unique edge by which Gj and Gj+1 differ. In particular, the Hamilton
cycle in Gj+1 must contain {v, w}. Hence Gj contains a path P from v to w
visiting all vertices in G (often called a Hamilton path). But since {v, w} is
the next edge added, we have degGj

(v) + degGj
(w) ≥ n, and all neighbours

to v and w must lie on P . But now, we can once again use the construction
in the proof of Theorem 62, to show that Gj already contained a Hamilton
cycle!

Another way of generalising the theorems of Dirac and Ore is to replace the
uniform condition on the minimum degree, and instead requiring to be above
a certain degree sequence:

32

Definition 69. Let G be a simple graph on n vertices. Then, the degree
sequence of G is a finite sequence (d1, . . . , dn) containing the vertex-degrees
of G in non-descending order, i.e. such that d1 ≤ d2 ≤ · · · ≤ dn. An
arbitrary sequence of integers (a1, . . . , an) is called Hamiltonian if all graphs
with a degree sequence (d1, . . . , dn) satisfying di ≥ ai for all i = 1, . . . , n are
Hamiltonian.

Observe that isomorphic graphs have the same degree sequence, but having
the same degree sequence does not imply being isomorphic.

Theorem 70 (Chvátal, 1972). Let n ≥ 3. An integer sequence (a1, . . . , an)
with 0 ≤ a1 ≤ · · · ≤ an < n is Hamiltonian iff for every i < n/2, we have
ai ≤ i =⇒ an−i ≥ n− i.

We turn our attention to two more examples:

The d-dimensional cube. Fix an integer d ≥ 2. The d-dimensional
cube has 2d vertices, labelled by binary strings of length d – in other words,
V = {0, 1}×d. Two vertices are neighbours iff the corresponding binary strings
differ in exactly one position. It follows immediately from this definition that
all vertices have degree d.

Proposition 71. The d-dimensional cube is Hamiltonian for all d ≥ 2.

Proof. We use induction over d. Denote the d-dimensional cube by Gd. For
d = 2, this is isomorphic to C4, which is trivially Hamiltonian, and any
Hamilton cycle in G2 will contain all of the edges, so in particular the edge
between (0, 0) and (1, 0). Assume that for some d ≥ 2, there is a Hamilton
cycle in Gd that contains the edge between (0, 0, . . . , 0) and (1, 0, . . . , 0). By
deleting this edge from the Hamilton cycle, we get a Hamilton path from
(0, 0, . . . , 0) to (1, 0, . . . , 0).

Now consider Gd+1. In Gd+1, there are is a copy of Gd (namely the subgraph
induced by all vertices whose first entry is a 0), and a second disjoint copy
of Gd (the subgraph induced by all vertices whose first entry is a 1). Using
this, we build a Hamilton cycle including the edge between (0, 0, . . . , 0) and
(1, 0, . . . ,) in Gd+1 as follows: Start in (0, 0, 0, . . . , 0). Traverse the Hamilton
path to (0, 1, 0, . . . , 0) inside the first copy of Gd. Then take the edge to
(1, 1, 0, . . . , 0), and traverse the Hamilton path in the second copy of Gd
backwards all the way to (1, 0, 0, . . . , 0). Finally, take the edge back to
(0, 0, 0, . . . , 0) to close the cycle.

Note that this in particular gives an ordering of the first 2n bit strings such
that going from one string to the next requires only one bit-operation. The
ordering we constructed in the proof of Proposition 71 is also known as Gray
code, and has a wide variety of applications.

33

000 001

010 011

100 101

110 111
3,5

1,4

2,5 1,3

2,4
1,2

2,3

3,4 4,5

1,5

The Hamiltonian cycle constructed in the proof of Proposition 71 in a 3-cube
on the left, and a cycle omitting exactly one vertex in the Petersen graph on
the right.

The Petersen graph. The Petersen graph has as vertex set the set of
two-element subsets of {1, 2, 3, 4, 5}, where two subsets are adjacent iff they
are disjoint. This gives a graph on 10 vertices, where every vertex has degree
3, and hence there are 15 edges in total.

Proposition 72. The Petersen graph is not Hamiltonian. However, upon
removing any one of its vertices, the remaining graph is, and the Peterson
graph admits a Hamilton path.

Proof. Consider the five edges connecting the inner five vertices with the
outer five vertices (in the figure above). Any Hamilton cycle C needs to
traverse along either 2 or 4 of those edges. If it contains two of them, they
need to connect pairs of adjacent vertices on both the inside and the outside,
and this is impossible. So, C contains four of those edges. Assume the edge
at {3, 5} is not included. This implies that among the 5 outside edges, the
two on top and the bottom one are in C, and the other two are not. However,
{1, 2} needs to lie on C, and this forces all edges in the cycle on vertices
{1, 2}, {4, 5}, {1, 3}, {2, 5}, {3, 4} to be on C, which is absurd.

To see that there exists a cycle through all but one vertice, we first show
that the choice of the omitted vertex does not matter. Let {i, j}, {i′, j′} ⊆
{1, . . . , 5}. Then, there exists a permutation π on {1, . . . , 5} mapping i to i′

and j to j′. This permutation extends to two-element subsets by mapping
{k, l} to {π(k), π(l)}, and this is in fact a bijection on P2({1, . . . , 5}) that
preserves disjointness. In graph-theoretic language, this shows that for any
two vertices {i, j}, {i′, j′} of the Petersen graph, there exists an isomorphism
of the Petersen graph with itself that maps {i, j} to {i′, j′} (i.e. the graph is
vertex-transitive). Hence the choice of the vertex is irrelevant. Finally, the
picture above shows that there is a cycle traversing all vertices but {1, 2},
and including the edge {{1, 2}, {3, 5}} instead of any of the other two edges
incident to {3, 5} will result in a Hamilton path.

34

Lecture 8 The max-flow-min-cut theorem

Consider a problem of the following form: We have to transport some material
from point A to point B, using e.g. the railway network. We can think of
this network as a graph, where e.g. train stations are vertices, and edges are
given by the railways in between. However, every railway section only has a
certain capacity (limited e.g. by the number of trains, or by their weights,
or ...). Given these constraints, how can we transport as much material as
possible?

The answer to such a question comes from the study of flows in directed
graphs, and will be the topic off this lecture.

Definition 73. A directed simple graph is a pair G = (V,E), where E ⊆
V ×V \{(v, v)|v ∈ V }. Here, we interpret an edge (v, w) as being an edge from
a vertex v to a (different) vertex w. Note that in this way, (v, w) 6= (w, v).

We could also consider directed multigraphs, but for our purposes, directed
simple graphs will be completely sufficient.

Definition 74. A flow network consists of a directed graph G = (V,E)
together with an edge weight function w : E → (0,∞), where two vertices
are considered distinguished: a source node s ∈ V and a sink node t ∈ V .

The function c : V × V → [0,∞) defined by c(v, v′) = w(v, v′) if (v, v′) ∈ E
and c(v, v′) = 0 otherwise is called the capacity function of the flow network.

For simplification, we shall assume that if (v, v′) is an edge in a flow network,
then (v′, v) is not an edge. This is not a real restriction, however: If both di-
rected edges are present in a graph, we can split the edge (v, v′) by introducing
a new vertex z in the middle, and set w(v, z) = w(z, v′) := w(v, v′).

• • • •

•

w

w′

w

w′w′

Intuitively, we can think of the flow network being a network of pipes, through
which water flows in the direction of the edges from the source to the sink,
and where the capacity of an edge tells us how much water per unit of time
can pass through this pipe. A flow will then be given by the information
how much water actually passes through every pipe, and it should satisfy two
constraints: First, it should not exceed the capacity; and second, at every
vertex v different from source and sink, the total amount of incoming water
should equal the total amount of outgoing water. The following definition
formalises this:

35

Definition 75. A flow f on the flow network G with capacity function c is a
function f : V × V → [0,∞) such that the following conditions are satisfied:

(i) f(v, v′) ≤ c(v, v′) for all v, v′ ∈ V (capacity constraint)

(ii) For v ∈ V \ {s, t}, we have
∑

x∈V f(x, v) =
∑

x∈V f(v, x) (conservation
constraint)

The value of a flow, denoted by |f |, is the total out-flow at the source. In
other words, |f | = ∑x∈V f(s, x)−∑x∈V f(x, s).

It follows from the conservation constraint that |f | is also equal to the total
in-flow at the sink, i.e. |f | =

∑
x∈V f(x, t) −∑x∈V f(t, x). Notice that

therefore, we can always assume that |f | ≥ 0 (if it is not, simply swap the
roles of s and t).

Imagine now we would cut edges in our network in such a way that we end
up with two connected components, one containing the source and the other
containing the sink. Any flow in the network must have passed through the
removed edges, therefore the sum of the capacities of these edges must be at
least as big as the value of the flow.

Definition 76. Let G = (V,E) be a flow network with source s and sink t.
An s-t-cut is a partition of V into two sets S, T such that s ∈ S and t ∈ T .
The capacity of the cut is c(S, T) =

∑
(v,v′)∈S×T c(v, v

′), that is, the sum of
the capacities of the cut edges.

The intuitive argument prior to the definition shows |f | ≤ c(S, T) for any
flow f and any s-t-cut V = S] T . The following lemma shows that equality
can only happen in the most extreme case:

Lemma 77. Let G be a flow network with a flow f and an s-t-cut of V into
S, T . Assume |f | = c(S, T). Then |f | is maximal among all flows on G, and
c(S, T) is minimal among all s-t-cuts of G.

Proof. Any flow f ′ with value |f ′| ≥ |f | would need to pass through the
s-t-cut (S, T) as well, hence |f ′| = |f | and f is maximal. Any s-t-cut (S′, T ′)
with capacity c(S′, T ′) ≤ c(S, T) would need to satisfy |f | ≤ c(S′, T ′), hence
c(S′, T ′) = c(S, T) and (S, T) is minimal.

The following construction is central in the theory of flow networks:

Definition 78. Let G = (V,E) be a flow network with source s and sink t,
and let f be a flow on G. The residual network Gf is the flow network with

36

residual capacity cf on the vertex set V constructed in the following way: For
vertices u, v, set

cf (u, v) :=


c(u, v)− f(u, v) if (u, v) is an edge in G
f(v, u) if (v, u) is an edge in G
0 otherwise

Now, let E(Gf) be the set of pairs (u, v) for which cf (u, v) > 0.

Observe how for this definition to make sense, it is essential to have no parallel
edges in opposite direction!

Example 79. Consider a flow network G with the flow f as below, where
the edge labels are of the form “flow”/“capacity”. Its residual network Gf is
shown on the right, where the dashed arrows are the contributions that come
from the flow f , whereas the drawn arrows come from the unused capacity of
the edge.

s • s •

G : Gf :

• t • t

2/3

0/3
1/1

1/2

1

3 1

2

1/3

2

1
1

1

Definition 80. Let Gf be the residual network with respect to a flow f
in a flow network G. A v0-vk-path is a sequence v0e1v1e2v2 . . . vk−1ek−1vk
where v0, v1, . . . , vk−1, vk are vertices, and e1, . . . , ek are edges in Gf , such
that these edges all point away from v0, i.e. ei = (vi−1, vi). An s-t-path P is
called augmenting.

Observe that in the construction of Gf , we only draw the arrows with
positive capacity. Hence the residual capacity of any v0-vk-path P , cf (P) :=
mine∈E(P) cf (e) is positive. In particular, this is true for augmenting paths.

Lemma 81. Let f be a flow in a network G = (V,E) such that Gf admits
an augmenting path P . Then the flow f ′, defined by

f ′(u, v) =


f(u, v) + cf (P) if (u, v) is an edge in P
f(u, v)− cf (P) if (v, u) is an edge in P
f(u, v) otherwise

for all edges (u, v) ∈ E, satisfies |f ′| > |f |.

37

Sketch of proof. We first check that 0 ≤ f ′(u, v) ≤ c(u, v) for all edges
(u, v) ∈ E, which involves a case distinction between the first two cases in
the definition of f ′. If (u, v) is an edge both in P and in E, then cf (u, v) is
the unused capacity of (u, v), and cf (P) ≤ cf (u, v). On the other hand, if
(v, u) is an edge in P , then cf (P) ≤ cf (v, u) = f(u, v) by construction of Gf .
Moreover, f ′ satisfy the conservation constraint, since at every interior vertex
of P , exactly two edges get changed by cf (P) (and it is a somewhat tedious
task to verify that this is compatible with the direction of the arrows).

Finally, consider the source node s. If f ′ changes the flow through an
outgoing edge in G, then it will increase the flow there by cf (P), otherwise,
it will diminuish the flow through an incoming edge G. In both cases,
|f ′| = |f |+ cf (P) > |f |.

Example 82. In Example 79, we could have found an augmenting path in Gf
by going down from s, then taking the diagonal arrow, and then going down
to t. This path would have let to the following new flow f ′ on G (shown left),
and the corresponding residual network Gf ′ :

s • s •

G : Gf :

• t • t

2/3

1/3
0/1

2/2

1

2

2

1

1/3

2

1 2

1

Theorem 83 (Ford-Fulkerson). Let f be a flow on the network G. Then,
t.f.a.e:

(i) f is a maximal flow.

(ii) Gf contains no augmenting path.

(iii) There is an s-t-cut (S, T) with |f | = c(S, T).

In particular, the maximal value of a flow equals the minimal capacity of an
s-t-cut.

Proof. The implication (iii) =⇒ (i) is contained in Lemma 77. The implication
(i) =⇒ (ii) is merely the contrapositive formulation of Lemma 81. Hence it
only remains to show (ii) =⇒ (iii).

Assume that Gf does not contain an augmenting path. Define S to be the
set of vertices that are either s or can be reached from s by a directed path

38

in Gf from s. Set T := V \ S. By assumption t ∈ T , and we have an s-t-cut
(S, T). By construction, every arrow in G from S to T must have its full
capacity used by f (otherwise there would stil be an arrow in Gf from S to
T), and every arrow in G from T to S must have a flow of 0 (otherwise, Gf
would contain an arrow in the opposite direction, so from S to T). Therefore,
|f | ≥ c(S, T), which is only possible if |f | = c(S, T).

The final claim follows via the implication (i) =⇒ (iii) and Lemma 77.

The Ford-Fulkerson theorem makes no statement about the existence of a
maximal flow. However, in a finite network G = (V,E) we can regard any
flow f as a vector in R|E|, where the e-th entry is from the closed interval
[0, c(e)]. This implies, together with the conservation constraint, that the
set of all flows on G is a compact subset of R|E|, and the map f 7→ |f | is
continuous, hence a maximal flow exists.

Note also that the construction in the proof of the Ford-Fulkerson theorem
can be used to obtain a minimum s-t-cut from a given maximum flow f .

Theorem 84 (Integer flow theorem). If G is a network with an integer
capacity function, i.e. c : V × V → Z≥0, then there is a maximal integer flow,
i.e. a maximal flow such that f(e) ∈ Z for every edge e.

Proof. Lemma 81 also works for integer flows and capacities, then yielding
an integral augmenting path. Thus, a non-maximal integer flow can be
augmented to another integer flow, and |f | is bounded, hence there must be
a maximal integer flow.

The theory of Ford-Fulkerson yields the following method of finding maximal
flows:

Ford-Fulkerson-“algorithm” Given a network G, start with the 0-flow f .
Repeat the following steps:

1. Construct Gf .

2. Find an augmenting path in Gf , then use it to modify f into a flow
with larger value, like in Lemma 81. If no augmenting path exists, stop.

This method is guaranteed to yield a maximal flow by Theorem 83, which can,
if necessary, be converted into a minimal cut, by performing the construction
in the proof of the Ford-Fulkerson theorem. However, the algorithm might
not terminate, although it does if the capacities in G are all rational (Why?).

39

Lecture 9 Matchings

Matchings arise when trying to pair up the vertices in a graph: If it were
just for the vertices, this wouldn’t pose much of a problem, but we want to
do it in such a way that paired vertices are neighbouring. This leads to the
following definition:

Definition 85. Let G = (V,E) be a finite simple graph. A matching on G
is a set M ⊆ E, such that no two edges in M have a common endpoint. If
e = {v, w} is an edge in M , then we also say that the vertices v and w have
been matched to each other.

For now, let us confine ourselves with considering bipartite graphs, i.e. graphs
where we have a partition V = A]B such that there are no edges between
two vertices in the same set of the partition. The complete bipartite graphs
Ka,b are just the edge-maximal bipartite graphs for fixed A,B.

In a bipartite graph on a partitioned vertex set V = A] B, we can ask if
there is a matching that matches all the vertices in A to some vertex in B.
For this to work, any subset Q ⊆ A must have at least |Q| neighbours in B
(otherwise, you couldn’t even match Q into B!). So, let’s denote by N(Q)
the set of all vertices that are a neighbour to some v ∈ Q. The next famous
theorem states that our obvious necessary condition is sufficient:

Theorem 86 (Hall, “marriage theorem”). Let G = (V,E) be a finite simple
bipartite graph with V = A]B. Then G contains a matching of A into B iff
|N(Q)| ≥ |Q| for all Q ⊆ A.

Proof. It remains to show the sufficiency of the marriage condition: Assume
that |N(Q)| ≥ |Q| for all Q ⊆ A. Create a flow network as follows: Introduce
a new vertex s which is a neighbour to every vertex in A, and another new
vertex t that is a neighbour to every vertex in B. Direct the edges in such
a way that everything points away from s and towards t, for edges between
A and B orient them so that they go from A to B. Finally, give every edge
incident to either s or t capacity 1, and give capacity ∞ to the edges going
from A to B (This is for convenience, and can be replaced by a large enough
constant depending on G).

For S′ = {s} and T ′ = A ∪ B ∪ {t} we have c(S′, T ′) = |A| < ∞, hence
c(S, T) <∞ for any minimum cut (S, T). In particular, there cannot be a
directed edge (u, v) with u ∈ A∩S and v ∈ B ∩T . Hence N(S ∩A) ⊆ S ∩B.

40

With this, let’s compute c(S, T):

c(S, T) =
∑
u∈S
v∈T

c(u, v) =
∑

v∈T∩A
c(s, v) +

∑
u∈S∩B

c(u, t)

= |T ∩A|+ |S ∩B| ≥ (|A| − |S ∩A|) + |N(S ∩A)|
≥ |A| − |S ∩A|+ |S ∩A| = |A|.

Comparing this with the cut (S′, T ′) shows that a minimum cut has capacity
|A|, hence there is a maximal integral flow f with value |A|. Following along
this flow then yields a matching of A into B.

To exemplify the construction of the flow network, here is what the network
for a K3,2 would look like. The unlabelled arrows have infinite capacity.

• •

s • t

• •

1

1

1

1 1

Corollary 87. Let G = (V,E) be a finite simple bipartite graph with V =
A]B. If |N(Q)| ≥ |Q| − d for every subset Q ⊆ A and some d ∈ N, then G
contains a matching with |A| − d edges.

Proof. Add d new vertices to B, each of them neighbouring all vertices in A.
This modified graph satisfies the marriage condition and therefore contains a
matching of A into the modified B, and at least |A|−d edges of this matching
must be in the original graph. Those form the desired matching.

Remark 88. The construction of a flow network from a bipartite graph
G = (A] B,E) as used in the proof of Hall’s theorem gives a bijection
between integer flows on the network and matchings on G. Indeed, given
an integer flow f from s to t, taking all edges (a, b) with a ∈ A, b ∈ B and
f(a, b) = 1 gives a matching on G because the flow through any vertex in
G can be at most 1. Moreover, the cardinality of this matching equals the
value of the flow, as can be seen by looking at the amount of flow going from
A to B.

Hall’s theorem answers the question whether we can match every vertex in
A to some vertex in B. But if the answer is no, we can still ask for the
maximum number of vertices in A that can be matched. König’s theorem
provides some insight there, but we need another definition first:

41

Definition 89. Let G = (V,E) be a finite simple graph. A vertex cover of
G is a subset S ⊆ V such that every edge has an endpoint in S. The covering
number of G, denoted β(G) is the minimum cardinality of any vertex cover
of G.

As we saw in Remark 88, constructing the flow network to a bipartite graph
relates matchings and flows. A dual relationship exists between vertex covers
and s-t-cuts with finite capacity: If (S, T) is a finite capacity cut on the
network constructed from G = (A]B,E), then C := (A ∩ T) ∪ (B ∩ S) is a
vertex cover of G with |C| = c(S, T) (indeed, any edge (a, b) with a ∈ A, b ∈ B
that is not covered by C would extend to a path from s to t in the flow network,
which is impossible since (S, T) was a cut). Similarly, any vertex cover C of
G gives rise to an s-t-cut in the network: Set S = {s} ∪ (A \ C) ∪ (B ∩ C)
and T = {t} ∪ (A ∩ C) ∪ (B \ C). Again, c(S, T) = |C|. Therefore, there is
also a bijection between finite capacity cuts (S, T) and vertex covers C on G,
with c(S, T) = |C|.

Theorem 90 (König’s theorem). Let G be a finite simple bipartite graph.
Then the maximum cardinality of a matching on G equals the minimum
cardinality of a vertex cover of G.

Proof. We use the afore-mentioned bijections between matchings and flows,
and between cuts and vertex covers. LetM be a matching in G with maximal
cardinality |M |. Construct the flow network G′ to the bipartite graph as
in the proof of Hall’s theorem. Then, by Remark 88, a maximal flow f on
G′ has value |f | = |M |. By the max-flow-min-cut theorem (Theorem 83), a
minimum cut (S, T) on G′ must be of capacity c(S, T) = |M |. Finally, the
bijection constructed after Definition 89 yields β(G) = c(S, T) = |M |, as
required.

Observe that even for general graphs, one inequality is true: Every edge in a
matching has to be covered by a vertex cover, and no vertex can cover more
than one edge of the matching at a time. Hence, for a maximum matching
M , the inequality |M | ≤ β(G) holds for an arbitrary graph G.

Let us now shift our attention towards matchings in arbitrary graphs. In
particular, let us focus on the question of when we can match up all vertices
in a graph:

Definition 91. A perfect matching or 1-factor M on a finite simple graph
G = (V,E) is a matching on G such that every vertex v ∈ V is an endpoint
of an edge e ∈M .

The name 1-factor comes from the following definition:

42

Definition 92. Let k ∈ N. A k-regular graph is a graph where every vertex
has degree k. A k-factor of a finite simple graph G is a k-regular spanning
subgraph of G.

For example, the 1-regular graphs are precisely those where every connected
component is a copy of K2 and the 2-regular graphs are precisely those where
every connected component is a cycle. Moreover, every hamiltonian graph
admits a 2-factor (the Hamilton cycle being a 2-regular spanning subgraph).

Clearly, for a finite simple graph G = (V,E) to have a perfect matching, |V |
must be even. However, more can be said: We shall write G− S := G[V \ S]
for the graph obtained after removing a vertex subset S ⊆ V . If G admits a
perfect matching, then G− S cannot contain more than |S| components on
an odd number of vertices (since those components must have had an edge
from the matching connecting them to a vertex in S). For brevity, we call
those components odd and denote the number of odd components in a graph
G by o(G).

Theorem 93 (Tutte’s 1-factor theorem). A finite simple graph G = (V,E)
admits a perfect matching iff o(G− S) ≤ |S| for any S ⊆ V .

Proof. We only have the necessity of the condition o(G−S) ≤ |S| left to show.
So, let G = (V,E) be a graph satisfying this condition but without perfect
matching. Adding an edge to such a graph will not affect the condition: If
the new edge connects two even or one even and one odd component in G−S,
then the o(G− S) doesn’t change, and if it connects two odd components,
then o(G− S) decreases. Hence, we can assume that G is an edge-maximal
graph satisfying o(G − S) ≤ |S| for all S ⊆ V , but without containing a
perfect matching.

Denote n = |V |. Observe how considering S = ∅ implies o(G) ≤ 0, hence n
must be even. Now, choose S = {v ∈ V : deg(v) = n − 1} (i.e. the set of
vertices being a neighbour to all other vertices), and consider G − S. We
distinguish 2 cases:

1) All components of G− S are complete. Then all of the even components
contain a perfect matching, and in each of the odd components, all but one
vertex can be matched up. By choice of S, this remaining vertex must have
been a neighbour to all vertices in S. Moreover, since there are at most |S|
odd components in G− S, we can match all of these remaining vertices with
vertices from S. This might leave some (an even number, since n is even!)
vertices in S unmatched, but by construction, G[S] is complete, hence they
can be matched to each other. In this way, we constructed a perfect matching
on G.

2) Let now K be a component of G− S that is not complete. In particular,
there exist vertices x, a, b ∈ V (K) such that {x, a} and {a, b} is an edge, but

43

{x, b} is not. Moreover, a /∈ S, so there is a vertex c ∈ V (G) that is not
a neighbour to a. By assumption, G was edge-maximal without a perfect
matching. Hence, there exist perfect matchings

M1 for (V,E ∪ {{x, b}})
M2 for (V,E ∪ {{a, c}}).

Surely, {x, b} ∈M1 and {a, c} ∈M2.

In G, consider a maximal path P starting at c with an edge from M1, and
then alternating between edges in M2 and edges in M1. This is always
possible: Since M2 matches c with a, but M1 doesn’t have this edge available,
M2 has to match c to some other vertex d 6= a. Then M1 cannot match d to
c, as c is already matched, so M1 matches d to a new vertex e 6= c, and so
on. This procedure continues until we reach x, a, or b.

Let v denote the last vertex on P . If the last edge on P was from M1, then
v = a – otherwise there is another vertex M2-matched to v that is not on P
yet. Then, define C to be the cycle in (V,E ∪ {{a, c}}) consisting of P and
the edge {a, c}. Similarly, if the last edge in P is from M2, then v ∈ {x, b}
(since P is a path in G, the edge {x, b} ∈ M1 is not available to extend P
further!). In this case, define C to be the cycle in (V,E ∪ {{a, c}}) consisting
of P and the edges {v, a}, {a, c}. In both cases, C is a cycle of even length,
where every second edge belongs to M2. Now modify M2 by replacing its
edges on C by the edges not in C – this will again be every second edge on
C, but it will avoid the edge {a, c}. Together with the edges from M2 that
were not on C, we thus obtain a perfect matching in G using only edges from
E, a contradiction.

44

Lecture 10 Connectivity

We have seen what it means for a graph to be connected already as early as
lecture 1. The notion of connectivity greatly generalises this, and leads to
statements about structural properties of graphs.

Definition 94. Let k ∈ Z≥0. A finite simple graph G = (V,E) is called
k-connected if |V | > k and G − X is connected for all sets X ⊆ V with
|X| < k. The largest k for which G is k-connected is the connectivity κ(G)
of G.

With this definition, every non-empty graph is 0-connected, and every
connected graph on at least 2 vertices is 1-connected. Also observe that
κ(Kn) = n− 1 (as no vertex subset can disconnect a complete graph upon
its removal), and that κ(G) = 0 means that either G = • or that G is
disconnected.

Definition 95. Let G = (V,E) be a finite simple graph, and let v, w ∈ V
and A,B ⊆ V . A set X ⊆ V separates v from w if v, w /∈ X and if every
path from v to w contains at least one vertex of X. We denote the minimum
size of a set separating v from w by κ(v, w). A set X ⊆ V separates A from
B if every path from A to B contains at least one vertex of B. Two paths
from v to w are called (vertex)-independent if they do not share a common
vertex besides the two endpoints.

Careful: The definition above makes a subtle but important difference
between separating vertices v, w (in which case the separating set X may not
contain either of the two vertices), and separating sets of vertices A,B (in
which case X may intersect A and B). In fact, to separate A from B, one is
required to have A ∩B ⊆ X, otherwise the lazy path at any vertex in A ∩B
would prevent separation.

Proposition 96. For a finite simple graph G = (V,E) that is not a complete
graph, we have κ(G) = minx,y κ(x, y), where the minimum is taken over all
non-adjacent pairs of vertices x, y.

Proof. Since G is not complete, κ(G) equals the minimum size of a set X ⊆ V
whose removal disconnects the graph. In particular, G−X contains at least
two components, so we can choose x0, y0 as vertices from different components.
Hence x0, y0 can be separated by X, and minx,y κ(x, y) ≤ |X| = κ(G).

Conversely, let x0, y0 be two non-adjacent vertices such that κ(x0, y0) attains
its minimum, then there exists a separating set X for x0 and y0 with |X| =
κ(x0, y0) = minx,y κ(x, y). In particular, a set of size |X| suffices to disconnect
G, hence κ(G) ≤ minx,y κ(x, y).

45

Recall that we originally defined a graph to be connected if for any two
vertices v, w there is a path from v to w. Is there a similar characterisation
for k-connectedness? It turns out, the answer is yes:

Theorem 97 (Menger). Let G = (V,E) be a finite simple graph, and let
v, w ∈ V be non-adjacent. Then the minimum size of a set that separates v
from w equals the maximum number of independent paths from v to w.

Proof. Construct a flow network from G as follows: Replace every edge
{x, y} ∈ E(G) by two directed edges (x, y) and (y, x) with infinite capacity
each. Then split every vertex x ∈ V (G) \ {v, w} into two vertices x0, x1 such
that every incoming edge to x is incoming to x0 and every outgoing edge
from x is outgoing from x1. Also add an edge (x0, x1) of capacity 1. Finally,
declare v to be the source and w to be the sink.

• • •1

Analogously to the proofs of Hall’s and König’s theorem, integer flows through
the network correspond to unions of disjoint paths from v to w in the graph
(where the value of the flow coincides with the number of disjoint paths).
Finite capacity v-w-cuts in the network need to cut through edges of capacity 1
that came from splitting vertices, hence finite capacity cuts correspond to sets
separating v from w (where the capacity of the cut coincides with the size of
the separating set). Hence, the statement follows from the max-flow-min-cut
theorem, Theorem 83.

Corollary 98 (Menger, global version). A finite simple graph G = (V,E) is
k-connected if and only if it contains k independent paths between any two
vertices.

Proof. If G is k-connected, then κ(G) ≥ k, hence κ(x, y) ≥ k for all non-
adjacent pairs of vertices by Proposition 96. By Menger’s theorem, those
vertices are therefore connected by at least k independent paths, and we
need to show that there are also enough paths when x and y are neighbours.
Assume that there are at most independent k − 1 paths from x to y. After
removing the edge {x, y} from G, resulting in a graph G′, there are at most
k − 2 paths left. Hence, according to Menger, we can separate x from y by
a set X of size at most k − 2 in G′. At the same time, G has more than k
vertices, so there is a vertex v not in X, and different from x and y. Then v is
separated by X from either x or y (w.l.o.g. from x). Thus X ∪ {y} separates
v from x in G, but |X ∪ {y}| ≤ k − 1, contradicting the assumption that G
is k-connected.

46

Conversely, if there are k independent paths between any two vertices, then
this in particular holds for any pair of non-adjacent vertices. If there is
no such pair, then G is a complete graph on at least k + 1 vertices, hence
κ(G) ≥ k. Otherwise we have κ(x, y) ≥ k by Menger’s theorem for any pair
of non-adjacent x, y, and hence κ(G) ≥ k by Proposition 96.

Sometimes, the following version is more useful:

Theorem 99 (Menger, v2). Let G = (V,E) be a finite simple graph and
A,B ⊆ V . Then the minimum size of a set X that separates A from B is
equal to the maximum number of disjoint paths with one end in A and the
other end in B.

Proof. To G, add two vertices s, t with arrows pointing from s to every vertex
in A and from every vertex in B to t. Endow these arrows with infinite
capacity, then proceed to split all of the original vertices as in the proof of
Theorem 97. The remaining argument is the same.

We have seen already how 1-connected graphs look like (they’re connected,
duh!). What’s special about 2-connected graphs?

Proposition 100. A finite simple graph is 2-connected iff it can be con-
structed from a cycle graph by succesively adding paths to it, both of whose
endpoints lie in the graph already constructed.

Proof. Every graph constructed in this fashion is 2-connected. Let’s call a
graph constructible if it can be obtained from the described procedure. If
G = (V,E) is a finite simple 2-connected graph, then G contains a cycle,
which is constructible. Hence, there is a maximal constructible subgraph H
in G. Then, H is induced: For x, y ∈ V (H) and an edge {x, y} in G but
not in H, this edge would constitute a path with both its endpoint in H,
contradicting the maximality of H. If H is not spanning, there is an edge
{x, y} with x ∈ V (H) and y /∈ V (H). Since G is 2-connected, removing x
from G still leaves a path P connecting y to V (H). But that means that in
G, going from x to y and then back along P to V (H) is a path with both
endpoints in V (H), again contradicting the maximality of H. Hence H must
be both induced and spanning, thus H = G.

Definition 101. Let G = (V,E) be a finite simple graph. A cutvertex is
a vertex whose removal increases the number of connected components of
G. A bridge is an edge whose removal increases the number of connected
components of G. A block is a maximal (with respect to inclusion) connected
subgraph H without a cutvertex in H.

47

The idea here is that blocks are for 2-connectedness what connected compo-
nents are for connectedness. Notice that any isolated vertex and any bridge
(with it’s endpoints) form a block, as these subgraphs are simply too small
to have cutvertices. Any larger block is guaranteed to be 2-connected, by the
global version of Menger’s theorem. Observe further that two blocks intersect
in at most one vertex, which is then a cutvertex in G (otherwise, the union
of the two blocks would be a larger connected subgraph without cutvertex).
In particular, any edge of G belongs to exactly one block.

Let G be a finite simple graph, let A be its collection of cutvertices, and let
B be its collection of blocks. The block graph of G is a bipartite graph with
vertices A] B, where an edge is drawn from a ∈ A to B ∈ B if a is a vertex
in B.

Lemma 102. Let G = (V,E) be a finite simple connected graph. Then the
block graph of G is a tree.

Proof. If the block graph of G contains a cycle, then by it’s bipartiteness
it must traverse at least two blocks of G. This means that G must have
contained a cycle traversing inside two different blocks. However, any cycle
C of G, is a connected subgraph without cutvertex, and hence contained in a
single block B.

Let’s now think about 3-connected graphs (because we’ll need them next
time).

Definition 103. Let G = (V,E) be a finite simple graph and e ∈ E. The
contraction of e is the graph G/e, constructed in the following way: For
e = {x, y}, introduce a new vertex vxy and set V (G/e) = V \ {x, y}] {vxy}.
Draw an edge in G/e between vxy and w whenever w was a neighbour to x
or y. Keep all edges of G that were not incident to x or y.

x y vxy

Lemma 104. If the finite simple graph G = (V,E) is 3-connected and has
more than 4 vertices, then there exists an edge e ∈ E such that G/e is again
3-connected.

Proof. Suppose no such edge exists. In particular, for all edges e = {x, y},
G/e contains a separating set X on 2 or less vertices. Since G is 3-connected,

48

this is only possible if vxy belongs to X and if X contains another element,
say z (In particular, z 6= x, y). Then, {x, y, z} must be a minimal separating
set for G, hence each of the three vertices must have a neighbour in every
component of G−{x, y, z} (Why?). Denote by C the smallest such component,
and suppose we’ve chosen {x, y} and z in such a way, that |V (C)| is minimal.

Choose a neighbour v of z in C. Then again, G/{v, z} is not 3-connected,
so just as earlier for {x, y, z}, there is a vertex w s.t. {z, v, w} separated
G. And once more, z, v and w each have a neighbour in every component
of G − {z, v, w}. One component, call it D, of G − {z, v, w} must contain
neither x nor y. Since v ∈ C, every neighbour of v that is in D must also
be in C. Thus D ∩ C 6= ∅, hence D is a strict subset of C. However, this
contradicts our choice of {x, y} and z and our construction of C.

We quote without proof the following theorem (again by Tutte):

Theorem 105 (Tutte 1961). A finite simple graph G is 3-connected iff
there is a sequence G0, . . . , Gn of finite simple graphs, where G0 = K4,
Gn = G, and for every i = 0, . . . , n − 1 the graph Gi+1 has an edge {x, y}
with degGi+1

(x),degGi+1
(y) ≥ 3 and Gi = Gi+1/{x, y}.

49

Lecture 11 Planarity

For small graphs, we often prefer a picture of the graph over specifying the
vertex and edge sets. This raises the question how “clean” of a picture we
can draw for a given graph – for example, can we draw the graph without
intersecting edges?

More specifically, we draw a graph by placing the vertices at certain points
in R2, and draw an edge by connecting its endpoints with an arc, that is, a
continuous/piecewise smooth/piecewise linear curve from one endpoint to
the other.

Definition 106. Let G = (V,E) be a finite simple graph. A graph is planar
if it can be drawn (embedded) in R2 such that the vertices are placed at
different points, and such that no edges intersect.

For example, K4 is planar as there is the following embedding to the plane:

The following definition relies on the very intuitive (but difficult to prove)
Jordan curve theorem, stating that a closed continous simple curve divides
the plane into exactly two open regions (inside and outside of the curve), one
of which is bounded, and one of which is unbounded. For the purpose of this
lecture, we generously ignore the topological ramifications, and rely on our
intuition.

Definition 107. Let G = (V,E) be a planar graph. Any planar embedding
of G divides the plane into several connected components, called faces, all
but one of which are bounded.

Observe that an embedded tree only yields one face (the unbounded one),
and that the boundary of any face contains a cycle in G if G contains a cycle
at all.

Theorem 108. Let G = (V,E) be a connected planar graph. Denote by f
the number of faces for some planar embedding of G. Then |V | − |E|+ f = 2.
In particular, any two planar embeddings have the same number of faces.

Our proof uses the following concept, which is important enough to warrant
its own definition:

50

Definition 109. Let G = (V,E) be a planar graph and fix a planar embed-
ding of it. The planar dual G∗ is the multigraph whose vertices are the faces
of the embedding of G and with edge set E. An edge e ∈ E connects vertices
f1, f2 in G∗ iff e was part of the boundary of the faces f1, f2.

Example 110. Here’s an embedded graph together with its planar dual:

∗

∗

∗

Note that the planar dual really depends on the embedding, i.e. there are
graphs with different planar embeddings, that produce non-isomorphic planar
duals!

Proof of Theorem 108. Let G = (V,E) be a connected planar graph. Fix
a certain planar embedding of it, and construct its planar dual G∗. Also
fix a spanning tree T = (V,ET) of G, and consider the spanning subgraph
T ∗ = (V (G∗), E \ ET) of G∗.

If T ∗ was disconnected, the embedding of T (i.e. the embedding of G, but
restricted to the subgraph T) would contain a set of edges that completely
encloses a face of G, hence T would contain a cycle. This is impossible due
to T being a tree. It T ∗ contained a cycle, the edges of this cycle would not
be in T , therefore separating at least one vertex in T , again contradicting T
being a tree.

Now T is a tree on |V | vertices and thus has |V | − 1 edges, and T ∗ is a tree
on f vertices and thus has f − 1 edges. Since every edge in E is either in T
or in T ∗, we get |V | − 1 + f − 1 = |E|, which proves the claim.

Euler’s formula has far-reaching consequences, but most importantly, we can
use it to show that certain graphs are not planar:

Corollary 111. If G = (V,E) is a planar graph on at least 3 vertices, then
|E| ≤ 3|V | − 6. If G = (V,E) is a planar graph on at least 3 vertices that
does not contain a triangle, then |E| ≤ 2|V | − 4.

51

Proof. Place coins to both sides of each edge in a planar embedding of G.
Then you placed 2|E| coins, and at the same time, you placed at least 3f
coins, as every face contains at least 3 coins from the minimum 3 edges
necessary to surround it. Hence 3f ≤ 2|E|. Together with Euler’s formula
|V | − |E|+ f = 2, this yields |E| ≤ 3|V | − 6 for connected planar graphs G,
which can be extended to disconnected planar graphs by considering each
component separately.

The second claim follows analogously, only that here, every face is bounded
by at least 4 edges.

Corollary 112. The graphs K5 and K3,3 are non-planar.

Proof. K5 contains 5 vertices and 10 edges, so cannot be planar by Corol-
lary 111. K3,3 contains 6 vertices and 9 edges, but because it is bipartite it
also cannot contain a triangle. Therefore it is non-planar, again by Corol-
lary 111.

As it turns out, these are, in a sense, the only two minimal non-planar graphs:
Every graph that contains one of them is non-planar as well. But in this
context, we can broaden our definition of containment a bit:

Definition 113. Let G,H be finite simple graphs. A subdivision of H is a
graph where some of the edges of H were replaced by vertex-independent
paths. If a graph G contains a subdivision of H, then H is a topological
minor of G.

The following pictures show a graph H on four vertices together with a
subdivision of H on the right. If a graph G contains such a subdivision, it is
said to have H as a topological minor.

Definition 114. Let G,H be finite simple graphs. The graph H is a minor
of G, if there is a subgraph G′ of G such that H can be obtained from G′ by
a finite sequence of edge-contractions (cf. Definition 103).

Clearly, if H is a (topological) minor of G, and H is non-planar, then so is G.
Hence, any graph with K5 or K3,3 as a (topological) minor cannot be planar.
The converse, however, is also true:

52

Theorem 115 (Kuratowski, 1930). A finite simple graph is planar if and
only if it contains neither a K5 nor a K3,3 as a topological minor.

Theorem 116 (Wagner, 1937). A finite simple graph is planar if and only
if it contains neither a K5 nor a K3,3 as a minor.

The proof of the remaining implications happens in three steps: First, one
shows that a graph contains K5 or K3,3 as a topological minor if and only
if it contains one of those as a minor. Second, one proves the statement
for 3-connected graphs, and then one shows that any edge-maximal graph
without such a minor is 3-connected. We will only focus on the second step
here.

The first step is the following lemma, which we will use without proof:

Lemma 117. Let G,H be finite simple graphs.

(i) If H is a topological minor of G, then H is also a minor of G.

(ii) If K3,3 is a minor of G, then it is also a topological minor of G.

(iii) If K5 is a minor of G, then K5 or K3,3 are a topological minor of G.

(For reference, these statements are a combination of Proposition 1.7.3 and
Lemma 4.4.2 in Diestel’s book)

Here comes the second step:

Lemma 118. Let G = (V,E) be a finite simple 3-connected graph without a
K5 or a K3,3 as minor. Then G is planar.

Proof. Use induction on |V |. For |V | = 4 we have G = K4, and the claim
is evident. So, assume that |V | > 4, and that it holds for all graphs on
fewer vertices. Since G is 3-connected, by Lemma 104 there exists an edge
e = {x, y} in G such that the contraction G/e is again 3-connected. Moreover,
G/e is a minor of G and hence can’t contain a K5 or K3,3 minor. Thus, by
induction hypothesis, G/e is planar.

Consider a planar embedding of G/e. Removing the vertex vxy (the one
obtained from contracting e = {x, y}) is then again a planar graph, and in
that drawing of (G/e)− {vxy} there is one face f that contained vxy. Since
G/e is 3-connected, the boundary of f is a cycle C. Denote by X the set of
neighbours of x in G except for y. Then X ⊆ V (C). Symmetrically, denote
by Y the set of neighbours of y in G except for x. Then Y ⊆ V (C). Taking
our embedding of G/e and removing all the edges {vxy, w} for w ∈ Y \X,
we get an embedding of G− {y}, with the vertex vxy replacing x. Our goal
is to show that to this embedding of G− {y}, we can add back y and all its
edges without destroying planarity.

53

Observe that the vertices in X (call them x1, . . . , xr in counterclockwise
fashion around C) partition the cycle C into paths Pi that go from xi to xi+1

(i = 1, . . . , r with the convention that xr+1 = x1). We need to show that all
vertices in Y lie on the same path Pi, since then we can insert y in the face
bounded by Pi, {xi, x} and {x, xi+1}.
Suppose for a contradiction that not all neighbours of y lie on the same path
Pi. We distinguish three cases:

• Suppose y1 ∈ Y \ X lies on the interior of some Pi, and there is
another neighbour y2 of Y that does not lie on Pi. Then {x, y1, y2} and
{y, xi, xi+1} form the vertices of a topological K3,3, a contradiction.

• Suppose that y has three neighbours that are also neighbours to x, say
xi, xj , xk. But now {x, y, xi, xj , xk} form the vertex set of a topological
K5, again a contradiction.

• In the last remaining case, deg(y) = 3 (because G is 3-connected, it
cannot have lower degree) and two of those neighbours are shared with
x, say xi and xk – the third neighbour of y being x itself. If xi and xk
don’t lie on a common path P·, then there must be vertices xj and x`
in between them, and then {xi, x, xk} and {xj , y, x`} form once again
the vertices of a topological K3,3.

Observe that these are really all the cases that can occur, but they are not
mutually exclusive.

The third step requires the following two lemmas:

Lemma 119. Let G = (V,E) be a finite simple graph with κ(G) ≤ 2. Let
V1, V2 ⊆ V such that V1 ∩ V2 is a separating set of G with |V1 ∩ V2| = κ(G).
Set Gi = G[Vi] for i = 1, 2. If G is edge-maximal without a K5 or a K3,3 as
a topological minor, then so are G1 and G2, and then G[V1 ∩ V2] = K2.

Lemma 120. Let G be a finite simple graph on at least 4 vertices. If G is
edge-maximal without K5 or K3,3 as topological minors, then G is 3-connected.

Those two lemmas (4.4.4 and 4.4.5 in Diestel) together say that even if our
graph is not 3-connected, but without a K5 or a K3,3 as a minor, you can
add edges until it becomes edge-maximal, in which case it is 3-connected.
Then, Lemma 118 states that the graph is planar.

54

Lecture 12 Vertex colourings

Definition 121. Let G = (V,E) be a finite simple graph. A (proper) k-
colouring of G is a map V → {1, . . . , k}, where we think of the numbers
1, . . . , k as colours, such that no two adjacent vertices are mapped to the
same colour. The chromatic number of G, denoted χ(G), is the smallest
integer k such that G admits a proper k-colouring.

Unless otherwise stated, proper colourings will be the only ones we consider,
and we will therefore drop the adjective “proper”.

Example 122. We have the following values for chromatic numbers: χ(Kn) =
n, χ(G) = 1 iff G doesn’t contain any edges, χ(G) = 2 iff G is a bipartite
graphs with at least one edge. Moreover,

χ(Cn) =

{
2 if n is even
3 if n is odd

.

Definition 123. Let G = (V,E) be a finite simple graph. A set C ⊆ V is a
clique if the induced subgraph V [C] is complete. The clique number of G,
denoted ω(G) is the largest integer k such that there exists a clique of size k
in G.

Definition 124. Let G = (V,E) be a finite simple graph. A set S ⊆ V is
independent if there are no edges between any two vertices of S. The indepen-
dence number of G, denoted α(G), is the maximum size of an independent
set in G.

Large cliques mean we need many colours to colour a graph, whereas large
independent sets mean we can colour many vertices with the same colour.
More precisely:

Lemma 125. For a finite simple graph G = (V,E), we have χ(G)α(G) ≥ |V |
and χ(G) ≥ ω(G).

Proof. If G contains a clique on k vertices, then at least k colours are required
to colour this clique, hence χ(G) ≥ k and therefore χ(G) ≥ ω(G). On the
other hand, any χ(G)-colouring ofG gives a partition of V into (not necessarily
non-empty) independent sets V1, . . . , Vχ(G), where Vi is the set of all vertices
having colour i, for i = 1, . . . , χ(G). Thus

|V | =
χ(G)∑
i=1

|Vi| ≤ χ(G)α(G),

since |Vi| ≤ α(G) for all i.

55

Lemma 125 gives lower bounds for the chromatic number. Upper bounds
can be achieved by constructing colourings. One useful tool is the following
algorithm:

Greedy colouring algorithm: Let G = (V,E) be a finite simple graph,
with an ordering on their vertices, say V = {v1 ≺ v2 ≺ . . . }. On the set of
colours, we consider the usual ordering 1 < 2 < 3 < As long as not all
vertices are coloured, take the first vertex v with respect to the ordering ≺
that is not yet coloured, and colour it with the smallest (w.r.t. <) colour
that has not yet been used on any neighbours of v. Then continue with the
next vertex.

The number of colours required by the greedy colouring algorithm strongly de-
pends on the ordering used, and can become almost arbitrarily bad. However,
we get the following estimate:

Lemma 126. For a finite simple graph G = (V,E) with maximal degree ∆,
the chromatic number satisfies χ(G) ≤ ∆ + 1.

Proof. Take any ordering on the vertices and run the greedy colouring al-
gorithm. Then, when a vertex v is about to be coloured, it has at most ∆
already coloured neighbours, that have at most ∆ different colours. Thus,
even in the worst case, v can be coloured with the (∆ + 1)-th colour, hence
χ(G) ≤ ∆ + 1.

Moreover, the greedy algorithm can be optimal if the ordering is chosen
correctly:

Lemma 127. Let G = (V,E) be a finite simple graph with chromatic number
χ(G). Then there exists an ordering on the vertices such that the greedy
colouring algorithm with respect to this ordering requires exactly χ(G) colours.

Proof. Fix a χ(G)-colouring of G, and order the vertices according to their
colours: The vertices with colour 1 go first, then the vertices with colour 2,
etc. Because every colour class is an independent set, the greedy colouring
algorithm will not require more than χ(G) colours.

In Example 122, we have seen two examples where equality in Lemma 126
holds: The complete graphs and the cycle graphs of odd length. As it turns
out, those are the only (connected) graphs for which this is true:

Theorem 128 (Brooks, 1941). Let G = (V,E) be a finite simple connected
graph with maximum degree ∆. Then χ(G) ≤ ∆ unless G is complete or a
cycle of odd length.

The first part of the proof is the following lemma:

56

Lemma 129. If G = (V,E) is a finite simple connected graph with maximum
degree ∆. If there is a vertex v with deg(v) < ∆, then χ(G) ≤ ∆.

Proof. Explore the graph using breadth-first search, starting from v: List the
neighbours of v in some order, and mark them as discovered. Then, go to
the first vertex in this list, append all its yet undiscovered neighbours to the
back of the list and mark them as discovered. Then delete the current vertex
from the list and repeat the procedure until the list is empty. The order in
which the vertices are visited is called the breadth-first-ordering of V starting
from v.

Let ≺ be the inverse ordering of the breadth-first-ordering, say vn ≺ vn−1 ≺
· · · ≺ v2 ≺ v1 = v, and use the greedy colouring algorithm with respect to
this ordering. Then, for i ≥ 2, the vertex vi has at most ∆− 1 neighbours in
{vn, vn−1, . . . , vi+1}. Hence, for all of these vertices ∆ colours suffice. Finally,
since deg(v) < ∆, the same holds true for v1 = v.

So, for Brooks’ theorem it suffices to show the statement for regular graphs.

Proof of Brooks’ theorem. Let G = (V,E) be a finite simple connected and
k-regular graph, which is neither complete nor a cycle of odd length. This is
impossible if k = 1 or k = 2, and for k = 2 the only graphs satisfying these
conditions are the cycles of even length, for which we know χ(G) = 2. Hence,
we may assume k ≥ 3.

Case 1: Assume G has connectivity κ(G) = 1. Then there exists some vertex
v as well as non-empty vertex sets V1, V2 ⊆ V with V = {v}]V1]V2 such that
removing v splits the graph into two components with vertex sets V1 and V2.
Write Gi = G[Vi ∪ {v}] for i = 1, 2. Observe that ∆(G1) = ∆(G2) = k, but
that degG1

(v), degG2
(v) < k. Hence, by Lemma 129 there exist k-colourings

of G1 and G2. Since the colours in a colouring can be arbitrarily permuted,
both colourings give colour 1 to the vertex v w.l.o.g. But then the colourings
can be combined to give a k-colouring of G, hence k = ∆(G) = χ(G).

Case 2: Assume κ(G) = 2, and that there exists a minimal separating
set {u, v} ⊆ V such that u, v are non-adjacent. Analogously to case 1, let
V1, V2 be the vertex sets of the components after removing u and v, and set
Gi = G[Vi ∪ {u, v}] for i = 1, 2. If one of the vertices u, v (w.l.o.g. u) has
degGi

(u) ≤ ∆− 2 for both i = 1, 2, then we can k-colour both Gi in such a
way that u and v have different colours from each other, but the same colours
in G1 and G2. Once again, gluing together the colourings gives a k-colouring
in G.

Otherwise, both u, v have degree 1 in one of G1 or G2. If both u, v have
degree 1 in G1 (or, analogously in G2) then they cannot both have the same
neighbour x ∈ G1, as removing x would disconnect G, contradicting κ(G) = 2.
Hence v has a unique neighbour v′ in G1 that is not a neighbour to u. But

57

then u and v′ form another minimal separating set of non-adjacent vertices,
where (after redefining G1, G2 accordingly) degG1

(u) = degG2
(v′) = 1. In

this case, however, it is once again possible to permute/manipulate the k-
colourings in G1 and G2 in such a way that they can be glued together to a
k-colouring in G.

Case 3: In any other case, let w ∈ V . There are neighbours u, v of w such
that {u, v} /∈ E, as otherwise G would be complete. Then G with u and v
removed is still connected, otherwise case 2 would apply. In the graph with u
and v removed, construct the breadth-first-ordering starting from w = v1, and
append it with the vertices vn−1 = v, vn = u. Then run the greedy colouring
algorithm on the inverted ordering u = vn ≺ v = vn−1 ≺ · · · ≺ v2 ≺ v1 = w.
Then, u, v will be assigned colour 1, for all vi with i ≥ 2 there are strictly
less than k neighbours already coloured, and for v1 two of the k neighbours
(u and v) share a colour. Hence, k colours suffice.

Definition 130. A finite simple graph G = (V,E) is perfect if χ(H) = ω(H)
holds for all induced subgraphs H of G.

In other words, a graph is perfect if the trivial lower bound to the chromatic
number is exact, not only to the graph itself, but also for all its induced
subgraphs. As an example, consider a bipartite G. Then, an induced
subgraph H that contains an edge (those are the only interesting ones) has
χ(H) = 2 = ω(H), and so G is perfect. For a non-example, consider C2n+1

with 2n+ 1 ≥ 5. Then χ(C2n+1) = 3 > 2 = ω(C2n+1), so the odd cycles of
length at least 5 are not perfect.

Definition 131. Let G = (V,E) be a finite simple graph. The complement
Ḡ of G is the simple graph (V,P2(V) \E). Thus, two vertices are adjacent
in Ḡ if and only if they are non-adjacent in G.

Theorem 132 ((weak) perfect graph theorem; Lovász, 1972). A finite simple
graph G is perfect if and only if its complement Ḡ is.

It follows from Definition 130 that induced subgraphs of perfect graphs are
perfect. Thus, any imperfect graph needs to have minimal induced subgraphs
that are imperfect - therefore, one could hope to describe perfect graphs in
terms of forbidden induced subgraphs, similar to how planar graphs can be
characterized by forbidden (topological) minors. We have already seen that
odd cycles of length at least 5 are imperfect, and by Lovász’s theorem, it
follows that their complements are also imperfect. It was a conjecture from
Berge (1961/63) that those would be all forbidden induced subgraphs, and
indeed:

Theorem 133 ((strong) perfect graph theorem; Chudnovsky, Robertson,
Seymour, Thomas, 2006). A finite simple graph is perfect if and only if it

58

contains neither an odd cycle of length at least 5 nor the complement thereof
as an induced subgraph.

Observe that the strong perfect graph theorem implies the weak, since the
condition in Theorem 133 is closed under taking complements.

59

Lecture 13 More on colourings

Last time, we have shown in Lemma 125 that χ(G) ≥ ω(G), so that the
existence of cliques in G provides a lower bound for the chromatic number of
G. A natural question to ask is how bad this bound can become. That is,
if we require ω(G) ≤ k, how large can χ(G) become? Sadly, the following
holds:

Theorem 134. For any integer n, there exists a finite simple graph Gn =
(Vn, En) that does not contain a triangle (and hence has ω(Gn) ≤ 2) such
that χ(Gn) = n.

Proof. For n = 1, 2 we find K1 and K2, respectively. For bigger n, we use
the following construction:

Let G = (V,E) be a finite simple graph. Denote its vertices by V =
{v1, . . . , vm}. The Mycelskian M(G) of G is the finite simple graph on the
2m+ 1 vertices {v1, . . . , vm, w1 . . . , wm, x} constructed in the following way:
On the vertices v1, . . . , vm, we have a copy of G, that is M [{v1, . . . , vm}] = G.
For each vertex wi, i = 1, . . . ,m, draw an edge to a vertex vj iff vj is a
neighbour of vi. Finally, draw an edge between x and wi for every i =
1, . . . ,m.

Lemma 135. Let G be a finite simple graph.

(i) If G is triangle-free, then so is M(G).

(ii) If χ(G) = k, then χ(M(G)) = k + 1.

This lemma allows us to conclude the proof: Since K2 is triangle-free with
chromatic number 2, M(K2) ∼= C5 is triangle-free with chromatic number 3,
and by iterating Mycielski’s construction, we obtain triangle-free graphs of
arbitrarily high chromatic number.

The following picture shows M(K2) and M(C5).

v2

v1

w2

w1

x

v1

v2

v3

v4

v5

w1

w2

w3

w4

w5

x

60

Proof of Lemma 135. (i) Let G = (V,E) be a triangle free graph on vertices
v1, . . . , vm. Using the notation from the proof of Theorem 134, we note that
{w1, . . . , wm} is an independent set in M(G). Thus, if there is a triangle
in M(G), it cannot contain more than one vertex from {w1, . . . , wm} (and
thus also cannot contain the vertex x). On the other hand, G is triangle-free.
Hence, the only remaining possibility for a triangle is to be spanned by vertices
vi, vj , wk for some indices i, j, k. Then {vi, vj} ∈ E, but by construction of
M(G), vi and vj also have the common neighbour vk, so G[{vi, vj , vk}] is a
triangle in G, a contradiction. Therefore, M(G) is triangle-free.

(ii) Assume G = (V,E) has chromatic number k, and fix a k-colouring of G.
The construction of M(G) enables us to extend this colouring to M(G) by
colouring wi with the same colour as vi. Then x has neighbours in k different
colours, and M(G) is k + 1-colourable. It remains to show that M(G) is not
also k-colourable.

To this end, assume that M(G) is k-colourable. W.l.o.g. the colour k is
assigned to the vertex x. Then the vertices w1, . . . , wm are coloured with
1, . . . , k − 1. Let A ⊆ {v1, . . . , vm} be the vertices that are assigned colour k.
For each vi ∈ A, change its colour to the colour of wi. Does this produce a
proper colouring? The set A is independent as it was a subset of a colour
class in M(G). Moreover, any neighbour of vi is a neighbour of wi, hence
any neighbour to vi must have a colour different from the colour of wi; so, we
obtain indeed a proper colouring. Restricting this colouring to the vertices
{v1, . . . , vm} gives a k − 1-colouring of G, which is a contradiction due to
χ(G) = k.

So, Theorem 134 states that a graph might have arbitrarily large chromatic
number, even if it does not contain any large cliques. Similarly, one could try
to outlaw the existence of short cycles: Given k, ` ∈ N, is there a graph with
χ(G) > k and no subgraph C3, C4, . . . , C`? Surprisingly:

Theorem 136 (Erdős, 1959). For any integer k, there exists a finite simple
graph G with χ(G) > k and such that G contains no cycles of length ≤ k.

We will give a proof of this result later, in Lecture 19, as an application of
the probabilistic method.

In the 1850s, the question was raised about how many colours are required
to paint a map, such that every connected region on the map gets a different
colour. In particular, the conjecture was raised that 4 colours might suffice.
Of course, in graph theoretic language, this conjecture says nothing more
than “Every planar graph is 4-colourable”. Despite early “proofs” in the 1870s
and ’80s (that later turned out to be false), the first bit of progress made was
by Heawood in 1891, after finding a mistake in one of those earlier arguments:

Theorem 137. If G = (V,E) is a planar graph, then χ(G) ≤ 5.

61

Proof. We use induction on |V |. For |V | = 1 we have χ(G) = 1, so assume
that for some n, we have χ(G) ≤ 5 for all planar graphs with |V | = n. Let G
be a planar graph with |V | = n+ 1. We use the following Fact: There exists
a vertex v ∈ V with deg(v) ≤ 5.

We choose such a v with minimal degree. Let G′ denote the graph G− {v}.
Then G′ is planar and by the induction hypothesis has χ(G′) ≤ 5.

Case 1: If deg(v) ≤ 4, then any 5-colouring of G′ can be extended to a
5-colouring of G by giving v a colour that is not used among its neighbours.

Case 2: If the minimal degree of G is 5, and any two neighbours of v have
the same colour, then we can repeat the argument from case 1. So assume
that all 5 neighbours of v have different colours. Fix a planar embedding of
G and call the neighbours v1, . . . , v5 in a counterclockwise fashion s.t. vertex
vi has (w.l.o.g.) colour i for i = 1, . . . , 5. Let V1,3 be the set of all vertices in
G′ that are coloured either 1 or 3, and let C(1)

1,3 be the connected component

of G′[V1,3] that contains v1. Similarly, let C(3)
1,3 be the connected component

of G′[V1,3] that contains v3. If C(1)
1,3 6= C

(3)
1,3 then the two components have

to be disjoint, and we can swap the colours 1 and 3 in one of them, to the
effect that v1 and v3 end up with the same colour. Then v is only adjacent
to vertices in 4 different colours, and we can again argue like in case 1.

So, let’s assume C(1)
1,3 = C

(3)
1,3 , in which case there is a path from v1 to v3

using only vertices with colours 1 and 3. This path, together with the edges
{v1, v}, {v, v3} and the vertex v form a cycle C, which in the embedding
of G divides R2 into an inside and an outside. However, by our choice of
embedding, v2 and v4 lie in different components of R2\C. Hence, performing
the same construction as with colours 1 and 3, the components C(2)

2,4 and

C
(4)
2,4 have to be disjoint. Thus, we can recolour one of them by swapping

colours 2 and 4. Then, v is once again only adjacent to vertices of 4 different
colours.

Sadly, the existence of planar graphs of minimum degree 5 prevents a mod-
ification of this argument into a proof of the 4-colour-conjecture. The 4-
colour-conjecture was eventually proven in the 1970s by Appel and Haken,
who showed that any minimal counterexample can be reduced to one of 1834
configurations, and then used computer search to verify that none of those
provided a counterexample. The proof was since further improved, reducing
the number of configurations and removing inaccuracies from the original
proof, and is now widely accepted. Hence, we have:

Theorem 138 (4-colour-theorem). Any planar graph is 4-colourable.

We also quote the following without proof:

Theorem 139 (Grötzsch). Any planar graph without triangles is 3-colourable.

62

Let us conclude our discussion of vertex-colourings by looking at some esti-
mates coming from spectral graph theory. For this, recall the definition of the
adjacency matrix A of G from Lecture 4: If G is a finite simple graph on
vertices labelled 1, . . . , n, then A is the n× n-matrix with entry 1 in position
(i, j) if i and j are adjacent, and 0 otherwise.

Since the adjacency matrix is symmetric, the spectral theorem from linear
algebra implies that it has n real eigenvalues, which can be arranged in
increasing size, say λmin(A) ≤ · · · ≤ λmax(A). Moreover, the adjacency matrix
encodes all the structure of the graph, so it should not be too surprising that
e.g. some graph properties can be read off from the characteristic polynomial
of A. And the connections don’t stop there. We also have the following
lemma:

Lemma 140. Let G = (V,E) be a finite simple graph, and H an induced
subgraph of G. Denote by AG and AH the adjacency matrices of G and H,
respectively. Then

λmin(AG) ≤ λmin(AH) ≤ λmax(AH) ≤ λmax(AG).

and δ(G) ≤ λmax(AG) ≤ ∆(G), where δ(G) and ∆(G) denote the minimal
and maximal degree of G, respectively.

We shall use this lemma (which relies on the technique of Rayleigh-quotients
from linear algebra) to prove the following theorem, providing yet another
estimate for χ(G).

Theorem 141 (Wilf, 1967). For any finite simple graph G with adjacency
matrix AG we have χ(G) ≤ 1 + λmax(AG).

Proof. Among all induced subgraphs of G, there exists a minimal subgraph
H (w.r.t. inclusion) with χ(H) = χ(G). Let v be a vertex of H. Then
H − {v} admits a χ(G)− 1-colouring, and if degH(v) < χ(G)− 1, then this
colouring could be extended to a χ(G)− 1-colouring of H, contradicting our
choice of H. Hence, the minimum degree in H is at least χ(G)− 1. Denote
by AH the adjacency matrix of H. Then,

χ(G) ≤ 1 + δ(H) ≤ 1 + λmax(AH) ≤ 1 + λmax(AG),

where we used the inequalities from Lemma 140.

Wilf’s theorem tends to be much better than the estimate χ(G) ≤ 1 + ∆.

There also exists a lower spectral estimate for the chromatic number:

Theorem 142 (Hoffman, 1970). For any finite simple graph G with at least
one edge we have χ(G) ≥ 1 + λmax(AG)

−λmin(AG) .

Note that λmin(AG) < 0 unless A = 0, since the sum of eigenvalues equals
zero.

63

Lecture 14 Edge-colourings and Ramsey Theory

Let us look at another variation of colourings: This time, we’re colouring the
edges in a graph.

Definition 143. Let G = (V,E) be a finite simple graph. A (proper) k-
edge-colouring is a map E → {1, . . . , k} such that no two edges with a
common endpoint are assigned the same colour. The chromatic index or
edge-chromatic number, denoted χ′(G), is the smallest integer k for which a
proper k-edge-colouring exists.

Any proper edge-colouring partitions the edge set into sets of edges with the
same colour, and by definition, those sets are matchings. So, similar to how
vertex-colourings were closely related to independent sets, edge-colourings
are related to matchings.

Moreover, if v is a vertex of maximum degree, then the ∆ edges incident to
this vertex must be of distict colours, hence χ′(G) ≥ ∆. It is a classical result
that this bound is attained for bipartite graphs:

Theorem 144 (König’s line-colouring theorem, 1916). For every finite simple
bipartite graph G with maximal degree ∆, we have χ′(G) = ∆.

Proof. LetG = (V,E) be bipartite. We use induction on the numberm := |E|
of edges. For m = 0 there is nothing to show. So, assume that the claim is
true for all graphs on m ≥ 0 edges, and consider a graph G with m+ 1 edges.

Denote by ∆ the maximal degree of this G, and fix an arbitrary edge {v, w}
from G. Let G′ be the graph obtained from G by deleting the edge {v, w}. By
the induction hypothesis, there is a proper ∆-edge-colouring of G′. Moreover,
each of v, w are incident to at most ∆ − 1 edges in G′. Hence, there are
colours i, j such that v is not incident to an edge of colour i and w is not
incident to an edge of colour j. If i = j, then we can colour {v, w} by i and
in this way obtain a ∆-edge-colouring of G.

So assume i 6= j. Let A,B be the vertex bi-partition of G, wlog v ∈ A,w ∈ B.
Consider a trail in G′ starting at v using alternatingly edges of colour j and
edges of colour i (Recall that a trail cannot repeat edges). Since v is not
incident to an edge of colour i, the first edge on any such trail has to be of
colour j. Moving along this trail will alternate between vertices from A and
B, where an edge of colour j will be occur exactly when moving from A to
B. Hence, no such trail can contain the vertex w, since w is not incident to
a vertex of colour j. Let Ci,j denote the component that contains v of the
subgraph of G′ that is induced by all edges of colour i or j. We just showed
that w /∈ Ci,j , so we can swap colours i and j in Ci,j without affecting w.
After swapping, we have a colouring of G′ in which both v, w are not incident

64

to an edge of colour j, so we can extend the colouring as we did in the first
case.

Besides having χ′(G) = ∆, what else can happen? Not much:

Theorem 145 (Vizing, 1964). Let G = (V,E) be a finite simple graph with
maximum degree ∆. Then either χ′(G) = ∆ (in which case G is said to be
class 1) or χ′(G) = ∆ + 1 (in which case G is said to be class 2).

Curiously enough, there is no known characterisation that distinguishes
between class 1 and class 2 graphs, but many partial results are known. Let’s
look at an example instead:

Example 146. The complete graphs Kn are of class 1 if n is even, and of class
2 if n is odd. This is because the edge set of a K2n is a disjoint union of
n− 1 perfect matchings, and we can assign one colour to each matching. For
K2n−1, after choosing which edges to colour with 1, there will always be at
least one vertex remaining with all incident edges being uncoloured. Hence,
∆ colours cannot suffice.

Definition 147. Let G = (V,E) be a finite simple graph. Its line graph
L(G) has vertex set E, where two vertices e1, e2 are adjacent if and only if
the edges e1 and e2 shared an endpoint in G.

As an example, here are K2,3 and its line graph:

c

b

a

β

α

aα bα

cα

aβ bβ

cβ

Directly from the definition we can translate concepts from G and L(G), for
example:

• If H = G〈S〉 for S ⊆ E(G) is an edge-induced subgraph of G, then
L(H) is exactly the by S ⊆ E(G) = V (L(G)) vertex-induced subgraph
of L(G). In other words, edge-induced subgraphs of G correspond
precisely to vertex-induced subgraphs of L(G).

• The (proper) edge-colourings of G are exactly the (proper) vertex
colourings of L(G). In particular, χ′(G) = χ(L(G)).

65

• Vertices with degree d in G correspond to cliques of size d in L(G). In
particular, ∆(G) = ω(L(G)).

• The edges of a matching in G don’t share a endpoints, hence they
are mutually non-adjacent vertices in L(G). Thus matchings in G are
independent sets in L(G).

Hence, Theorems 144 and 145 can be re-interpreted as statements about line
graphs. Specifically, since any edge-induced subgraph of a bipartite G is again
bipartite, Theorem 144 then states that χ(H) = ω(H) for any vertex-induced
subgraph H of L(G). Hence, we could rephrase the theorem as “The line
graphs of bipartite graphs are perfect”.

A minimum of Ramsey theory. Consider now a graph Kn, and colour
its edges with two colours, say red and blue. (Obviously, this requires us to
drop the condition that edges with a common endpoint need to have different
colours).

Definition 148. Let k ∈ N. The k-th Ramsey number R(k) is defined to
be the smallest integer n such that every red-/blue-colouring of Kn contains
a monochromatic Kk.

There is an alternative formulation: Given any red-/blue-colouring of Kn, we
can construct any arbitrary graph on n-vertices by including exactly the blue
edges. The Ramsey number R(k) is then the smallest n such that every finite
simple graph on n vertices contains a clique on k vertices (if a monochromatic
Kk was blue) or an independent set on k vertices (if a monochromatic Kk

was red).

Notice that the definition does not guarantee the existence of any of the
R(k).

Theorem 149 (Ramsey,1930). For any k ≥ 2, we have R(k) ≤ 22k−3. In
particular, Ramsey-numbers exist.

Proof. For brevity, set n = 22k−3. In Kn, we construct sets V1, . . . , V2k−2 of
vertices, together with distinguished vertices vi ∈ Vi such that

(i) For i = 1, . . . , 2k − 2, we have |Vi| = 22k−2−i.

(ii) For i = 2, . . . , 2k − 2, we have Vi ⊆ Vi−1 \ {vi−1}.

(iii) The vertex vi−1 only has edges of one colour to all vertices in Vi for
i = 2, . . . , 2k − 2.

For V1, we have to take the entire vertex set of Kn, and we pick v1 ∈ V1

arbitrarily. Assume we have chosen Vi−1 and vi−1 according to (i)-(iii). Then,

66

Vi−1 \ {vi−1} can be partitioned into two sets: The vertices that are adjacent
to vi−1 with a red edge, and those that are adjacent to vi−1 with a blue edge.
One of those sets contains at least 22k−2−i vertices. Choose Vi from this set
according to (i)-(iii), and vi ∈ Vi arbitrarily.
This gives 2k−3 vertices v1, . . . , v2k−3. Hence, there are at least k−1 vertices
vi−1 among them that connect to the respective Vi with a common colour.
Then these k − 1 vertices together with v2k−2 induces a monochromatic
Kk.

Example 150. We have R(1) = 1 and R(2) = 2. We’ll show next that
R(3) = 6. For higher k, it is known that R(4) = 18, and above that only
bounds are known: 43 ≤ R(5) ≤ 49 and 102 ≤ R(6) ≤ 165, and determinining
the exact values seems to be completely out of reach of current methods.

Proposition 151. We have R(3) = 6, that is, every red-/blue-colouring of
K6 contains a monochromatic triangle, but there is a red-/blue-colouring of
K5 without a monochromatic triangle.

Proof. The part about K5 is left as an exercise. For K6, observe that there
are

(
6
3

)
= 20 triangles in K6. Consider triplets (x, y, z) of vertices such that

the edge {x, y} is red and the edge {y, z} is blue.
Case 1: If all edges incident to y are of the same colour, then y can not be
the middle vertex of such a triplet.

Case 2: If all but one edge incident to y are of the same colour, then y can
be the middle vertex of at most 4 such triplets.

Case 3: If two edges incident to y are of one colour, and the other three are of
the other colour, then y can be the middle vertex of at most 6 such triplets.

Hence, there are at most 36 such triplets. It is clear that such a triplet can only
occur in a non-chromatic triangle, but every non-chromatic triangle yields
two different triplets. Hence, there are at least 20− 36

2 = 2 monochromatic
triangles.

67

Lecture 16 Szemerédi’s regularity lemma

Large graphs and networks tend to occur in real-life applications in abundance:
There’s the internet (both in it’s physical appearance as a network of devices,
routers and servers, and in it’s virtual structure: webpages and hyperlinks
connecting them), social relations and the brain (neurons and how they
connect to each other), just to name a few. Analyzing the exact structure
of those graphs with often billions of vertices is almost always impossible,
after all, the number of potential edges grows like the square of the number
of vertices.

It is all the more important to find approximations and limiting behaviours
of large graphs. Of course, both of these notions bring up many immediate
follow-up questions: What does it mean for a graph to be an approximation
of another graph? How exactly should we understand a limit of a (growing)
sequence of graphs, and what kind of object should that be? What graph
parameters behave well under approximations and/or limits? And while
questions of this kind are often subject to current research, there are some
established tools, one of them being Szemerédi’s regularity lemma.

Recall that a finite simple graph G = (V,E) on n vertices has at most
(
n
2

)
edges, and that a bipartite graph with V = A]B has at most |A||B| edges.

Definition 152. Let G = (V,E) be a finite simple graph on n vertices. The
quantity d(G) := |E|

(
n
2

)−1 is the density of G. Given X,Y ⊆ V disjoint,
denote by e(X,Y) the number of edges in G with one endpoint in X and the
other in Y . The quantity d(X,Y) := e(X,Y)

|X||Y | is the density of the pair (X,Y).

By construction, both d(G) and d(X,Y) are numbers between 0 and 1.

Definition 153. Let ε > 0. A pair A,B ⊆ V of disjoint vertex sets is called
ε-regular if |d(X,Y)− d(A,B)| ≤ ε for all X ⊆ A, Y ⊆ B with |X| ≥ ε|A|
and |Y | ≥ ε|B|.

In other words, a pair (A,B) being regular means that as soon as we sample
sets X,Y that are not too small, the density of (X,Y) will not be too far
away from the density of (A,B). This is also what would happen if the graph
was random, with every edge being present independently from each other
with some fixed probability p.

Theorem 154 (Szemerédi’s regularity lemma, 1978). For every ε > 0 and
every m ∈ N there is an M ∈ N such that every finite simple graph G = (V,E)
on at least M vertices has a partition V = V0] V1] · · ·] Vk such that

1. m ≤ k ≤M

2. |V0| ≤ ε|V | (and V0 may be empty)

68

3. |V1| = · · · = |Vk|

4. all but at most εk2 of the pairs (Vi, Vj) are ε-regular for 1 ≤ i, j ≤ k.

The idea of the regularity lemma is as follows: We have a small garbage bin
V0 to ensure that the other sets V1, . . . , Vk are of the same size and to collect
special vertices. Letting m grow large, we can moreover ensure that the
size of V1, . . . , Vk becomes small enough so that most edges are in between
different sets. Then, up to any given tolerance ε, any sufficiently large graph
looks mostly like a random graph, except for some small proportion of pairs,
and on the exceptional set V0.

When applying the regularity lemma, it is often useful to discard unnecessary
edges and vertices. In particular, the exceptional set V0, any internal edges to
the Vi and pairs (Vi, Vj) with too low of an edge density tend to be annoying.
However, discarding too many edges might destroy important features of the
graph. Luckily, there is the following version of the regularity lemma:

Lemma 155 (Degree version of the regularity lemma). For every ε > 0
and every m ∈ N there is an M ∈ N such that for every finite simple graph
G = (V,E) on at least M vertices and for any δ ∈ [0, 1], there exists a a
partition V = V0] V1] · · ·] Vk and a spanning subgraph G′ ⊆ G such that

1. m ≤ k ≤M

2. |V0| ≤ ε|V | (and V0 may be empty)

3. |V1| = · · · = |Vk|

4. degG′(v) > degG(v)− (δ + ε)|V | for all v ∈ V

5. The sets Vi for i ≥ 1 are independent in G′

6. all of the pairs (Vi, Vj) for 1 ≤ i, j ≤ k are ε-regular, either with density
≥ δ or with density 0.

Having such a G′, we can construct the graph G′′ = G′ − V0 for even more
comfort. This graph still has most of the edges of G (assuming d(G) > 0),
because we have

degG′′(v) > degG(v)− (δ + ε)|V | − |V0| ≥ degG(v)− (δ + 2ε)|V |

for all vertices v ∈ V (G′′). It then follows from the handshaking lemma that

|E(G′′)| > |E(G)| − (δ + 3ε)
|V |2

2
. (2)

Given ε > 0 and a certain threshold δ ∈ [0, 1], we can reduce a partitioned
graph with V = {V1, . . . , Vk} in the following way: Let R have vertices

69

1, . . . , k such that two vertices i and j are adjacent iff (Vi, Vj) is an ε-regular
pair with density ≥ δ. So, the reduced graph keeps track of which partition
sets are densely connected, and which ones are not.

Conversely, given any finite simple graph R and a positive integer t, we can
“blow up” R by replacing every vertex x of R with an independent set Vx of t
vertices, and by replacing an edge {x, y} in R with all possible edges between
the independent sets Vx and Vy. In other words, Vx ∪ Vy induces a complete
bipartite graph in this new graph. We denote the graph obtained in such a
way by R(t).

Lemma 156 (“Key lemma”). Let δ > ε > 0, and let G, G′′, and R be as
above (meaning G′′ is obtained from Lemma 155 after deleting V0, and R
is the reduced graph of G′′). Fix t ∈ N. Let H be a subgraph of R(t) with
maximum degree ∆(H). If

ε ≤ (δ − ε)∆(H)

2 + ∆(H)
and t− 1 ≤ (δ − ε)∆(H)

2 + ∆(H)
m

then H is a subgraph of G′′, and therefore also of G.

Why is this lemma “key”? Imagine we obtained G′ with some δ from the
degree formulation of the regularity lemma, lemma 155. Then, after throwing
away V0 we obtain some G′′ which will have some reduced graph R for
the threshold δ. Then in R(t) we replace vertices by independent sets and
edges by complete bipartite graphs between them; and we can use this rigid
structure to exhibit a subgraph H in R(t). This lemma then states that if H
satisfies some technical condition, then H was already present in G.

In the rest of the lecture, we want to look at the Erdős-Stone theorem and
how to prove it with the help of Szemerédi’s regularity lemma. However, we
need a bit of set-up for this.

An application. Let us consider the following, innocent-looking question:
How does a graph on n vertices with the maximal number of edges but without
a Kr-subgraph look like? The idea is to consider a complete (r − 1)-partite
graph on n vertices, where every set of the partition is as close to n/(r − 1)
as possible.

Definition 157. Let n, r ∈ N. Then there exist unique non-negative integers
a, b such that n = a(r − 1) + b with 0 ≤ b < r − 1. The Turán graph Tr−1(n)
is the complete (r − 1)-partite graph on n vertices such that b sets of the
vertex-partition have a + 1 elements, and the other r − 1 − b sets have a
elements. In particular, for n ≤ r − 1, we have Tr−1(n) = Kn. The number
of edges in Tr−1(n) are the Turán numbers tr−1(n).

Theorem 158 (Turán,1941). For n, r ∈ N, any finite simple graph on n
vertices that does not contain a Kr subgraph and has the maximum number
of edges is a Tr−1(n).

70

Proof. It is easy to see that among complete multipartite graphs not contain-
ing a Kr, the Turán graphs contain the maximum number of edges. Thus
it suffices to show that any such extremal graph G = (V,E) is complete
multipartite.

Consider the following notion of vertex duplication: For some v ∈ V , add
a “copy” v′ to the vertex set, and draw edges such that the neighbours of
v′ are exactly the neighbours of v. Now, if G is not complete multipartite,
then there exist vertices x, y1, y2 such that x and y1 are non-adjacent, x and
y2 are non-adjacent, but y1 and y2 are adjacent (Why?). In the case that
deg(y1) > deg(x), deleting x and duplicating y1 yields a graph without Kr

and more edges than G. Analogously, deg(y2) > deg(x) is impossible. Hence
deg(y1), deg(y2) ≤ deg(x). But now, deleting both y1 and y2 and duplicating
x twice yields a graph without Kr and more edges than G.

Observe that the Turan graphs Tr−1(n) have edge density d(Tr−1(n)) →
r−2
r−1 , which follows from the formula for the number of edges in complete
multipartite graphs, Proposition 19. Also note that, while Kr-free, Tr−1(n)
contains a lot of Kr−1’s (unless n < r − 1): Any choice of picking one vertex
from each set of the partition yields a Kr−1. Similarly, the following theorem
states that if a graph on a large enough number of vertices fails to have less
than tr−1(n) edges, then it contains a large number of Kr-subgraphs.

Theorem 159 (Erdős-Stone, 1946). For all integers r ≥ 2 and s ≥ 1, and
all β > 0, there exists an N such that any finite simple graph with n ≥ N

vertices and more than
(
r−2
r−1 + β

) (
n
2

)
edges contains the complete r-partite

graph Ks,...,s.

Observe that necessarily β ≤ 1
r−1 if such a graph is to exist.

Proof. Let Gn be finite simple graphs on n vertices having more than(
r−2
r−1 + β

) (
n
2

)
edges. Set δ = β/2 and let ε = (β/6)rs. Then, by the

degree formulation of the regularity lemma there is a (spanning) subgraph
G′ together with a partition of V (G) into sets V0, V1, . . . , Vk satisfying the
properties in Lemma 155. Let G′′ = G′ − V0 and let R be the reduced graph
of G′′, with parameter ε and threshold δ. Counting the edges in R and
comparing it with the edge densities in G′′ yields

|E(R)|
|V (R)|2/2 ≥

|E(G′′)|
n2/2

>
r − 2

r − 1
,

where for the last inequality, we relied on the estimate (2). Therefore, R has
higher edge density than the Turán graphs Tr−1(n), hence R contains an
r-clique, and so R(s) contains an r-partite Ks,...,s.

71

It remains to check that for H = Ks,...,s and our choice of parameters, the
conditions of the key lemma (Lemma 156) are satisfied. Indeed, we have
∆(H) = (r − 1)s, and then obtain:

(δ − ε)
(2 + ∆(H))1/∆(H)

>
β

2
−
(
β

6

)rs
≥ β

2
− β2

36
≥
(
β

6

)r
for all β > 0, which implies the first technical condition. For the second one,
observe that m = |V1| ≥ n(1−ε)

k . In particular, choosing n large enough, we
get

s− 1 ≤ (δ − ε)∆(H)

2 + ∆(H)
m

for free. Thus, for n large enough, Gn contains Ks,...,s.

One can ask similar questions for any fixed subgraph H: Given n, what is the
maximum number of edges a graph on n vertices can have without containing
a copy of H as a subgraph? (Such graphs are called extremal). This number
is denoted ex(n,H). By Turán’s theorem, we have ex(n,Kr) = tr−1(n).
The following corollary is a cute consequence of Turán’s theorem and the
Erdős-Stone theorem:

Corollary 160. Let H be a finite simple graph containing at least one edge
and having chromatic number χ(H). Then

lim
n→∞

(
n

2

)−1

ex(n,H) =
χ(H)− 2

χ(H)− 1
.

72

Lecture 17 The Rado graph

Construct an infinite simple graph as follows: Let V = N0, and represent
each vertex in binary. For i < j, draw an edge between the vertices i and j if
the digit representing 2i in the binary expression for j is a 1, otherwise don’t.
Here’s an example: 5 = 22 + 20 = (101)2, so vertex 5 has neighbours 0 and 2,
as well as 25, 25 + 1, 25 + 2, ... and many more. The graph obtained in this
way is known as Rado graph.

Another way to understand this construction is to consider the vertices
neighbouring 0, 1, 2, ...: Neighbours of 0 must have a 1 in their last binary
position, so 0 has an edge to all odd numbers. Similarly, neighbours of 1 have
a 1 in their second-to-last binary position, and those are exactly the numbers
2, 3, 6, 7, 10, 11, ..., i.e. the numbers congruent to 2 or 3 mod 4. Compare
also to the following picture showing the subgraph induced by the vertices
0, ..., 9

0

1

23

4

5

6

7 8

9

The Rado graph is known to have several astonishing properties, and we will
look into some of them in this lecture. Our motivating goal will be to show
the following theorem:

Theorem 161. Let R be the Rado graph, and let G be any finite simple
graph. Then there is an induced subgraph H of R such that H ∼= G.

In other words, R contains all finite simple graphs as induced subgraphs. The
proof relies on the following, innocent looking property a graph can have:

Definition 162. A simple graph G = (V,E) is said to have the extension
property (P) if, for all finite disjoint subsets U,W ⊆ V , there exists a vertex
x such that x is a neighbour to every vertex in U , but not a neighbour to
any vertex in W .

It follows immediately that any graph G = (V,E) with property (P) must be
infinite, since for a finite graph, we could set U = V,W = ∅, and property
(P) would yield the existence of a vertex not in V , which is absurd.

Lemma 163. The Rado graph R satisfies the extension property.

73

Proof. Consider two finite, disjoint subsets U,W ⊆ N0, say U = {u1, ..., um}
andW = {w1, ..., wn} for m,n ≥ 0. Our goal is to construct an integer r such
that r is a neighbour to u1,, um according to the construction of Rado’s
graph, but not a neighbour to w1, ..., wm. So, set ` := 1 + max(U ∪ V), and
define

r := 2` +

m∑
i=1

2ui .

With this definition, we ensure that r is larger than any number in either U
or W . Moreover, all numbers in U are neighbours to r, as their binary digits
occur in the binary expansion of r, by construction. Similarly, since W is
disjoint to U , none of the digits of r belonging to w1, ..., wn can be 1; hence
r is not a neighbour to any of those vertices.

Proof of Theorem 161. Let G = (V,E) be any finite simple graph, and as-
sume w.l.o.g. that there is some ordering on its vertex set, say V = {v1, ..., vn}
with the ordering given by the indices. We will inductively construct
a sequence of induced subgraphs R1, ..., Rn of R such that for each k,
Rk ∼= V [{v1, ..., vk}] =: Gk.

Begin by embedding vertex v1 to any vertex w1 of R, and set R1 = R[{w1}].
Now, assume that for k = 1, ..., n − 1 we have already constructed Rk =
R[{w1, ..., wk}] in such a way that the isomorphism between Gk and Rk maps
vj to wj for all j = 1, ..., k. Now, consider vk+1, and set

U := {wj : 1 ≤ j ≤ k s.t. vj is adjacent to vk+1}
W := {wj : 1 ≤ j ≤ k s.t. vj is not adjacent to vk+1}

Since R satisfies the extension property, there exists a vertex wj+1 that is
a neighbour to all wj ∈ U and not a neighbour to each wj ∈ W . Hence
mapping vk+1 to wk+1 extends the isomorphism between Gk and Rk to an
isomorphism of the induced subgraphs Gk+1 and Rk+1.

Thus, we can repeatedly extend this construction until we map G = Gn to
Rn.

Observe how we did not require anything about the Rado graph in the proof
of Theorem 161 other than the fact that it satisfies property (P). We thus
get immediately:

Corollary 164. Any graph with the extension property contains all finite
simple graphs as induced subgraphs.

As it turns out, having property (P) has many more interesting consequences,
perhaps most importantly:

Theorem 165. Let G = (V,E) be a simple graph on a countable vertex set
V , and assume G satisfies (P). Then G ∼= R.

74

Thus, up to isomorphism R is the only graph on a countable vertex set that
satisfies (P).

Proof. Similarly to the proof of Theorem 161, we use property (P) to extend
isomorphisms between smaller subgraphs, but require a bootstrap argument
to make sure we extend to the entire infinite graph in the end.

Start by labelling the vertices of G by v0, v1, v2, . . . (thus giving an ordering
of the vertices), and let G0 := G[{v0}] and R0 := R[{0}]. Clearly, G0

∼=
R0. Let us now assume that we have extended this isomorphism to two
induced subgraphs Gn and Rn, having vertices a0, a1, . . . , an and b0, b1, . . . , bn
respectively, with the isomorphism mapping aj to bj for 0 ≤ j ≤ n. Now
proceed along the following two steps:

1. Let an+1 be the earliest vertex in G not yet included in Gn. Set Gn+1 :=
G[{a0, a1, . . . , an+1}]. By the argument in the proof of Theorem 161, there
exists a vertex bn+1 in R that extends the isomorphism to Gn+1

∼= Rn+1 :=
R[{b0, b1, . . . , bn+1}].
2. Let bn+2 be the earliest vertex in R not yet included in Rn+1. Analogously
to step 1, there exists a vertex an+2 in G that extends the isomorphism to
Rn+2 := R[{b0, b1, . . . , bn+2}] and Gn+2 := G[{b0, b1, . . . , bn+2}].
Now, starting from G0

∼= R0, we can extend the isomorphism by repeating
steps 1 and 2 over and over again. It only remains to show that in this
way, every vertex in either graph gets mapped to some vertex in the other
graph. However, from alternating between the two steps, it follows that
vn is contained in {a0, a1, . . . , a2n}, and a vertex n in R is contained in
{b0, b1, . . . , b2n}. Therefore, this procedure indeed extends to an isomorphism
G ∼= R.

The extension property is a very strong condition, and it has a number of
consequences, among them:

• diam(R) = 2

• To all finite disjoint vertex sets U,W exist infinitely many vertices that
are neighbours to every u ∈ U , and non-adjacent to every w ∈W .

• If a finite number of edges is either added to or deleted from R, then
the resulting graph is still isomorphic to R.

• For N0 = V1] V2, at least one of R[V1] and R[V2] is isomorphic to R.

Let us now consider a different construction of infinite graphs, yielding the
infinite random graph G(p):

Fix 0 ≤ p ≤ 1. Let V = N, and for any pair of different integers i, j, toss a
weighted coin: In this way, the graph contains the edge ij with probability

75

p, and doesn’t contain this edge with probability 1− p, independently of all
other edges.

The cases p = 0 and p = 1 are not particularly interesting: For p = 0, G(p)
will contain no edges at all (with probability 1), whereas for p = 1, G(p) turns
out to be the complete graph on countably infinite many vertices (again, with
probability 1). For all values in between, one would expect G(p) depend both
on the parameter p as well as on the randomness involved in the construction.
However, this is not the case:

Theorem 166. For 0 < p < 1, the graph G(p) satisfies the extension property
with probability 1.

By Theorem 165, this immediately implies that G(p) ∼= R almost surely.

As first tool for the proof, we require the following fact: If A1, A2, . . . is a
sequence of events such that P[An] = 1 for all n, then

P

[∞⋂
n=1

An

]
= 1−P

[∞⋃
n=1

Acn

]
≥ 1−

∞∑
n=1

P[Acn] = 1.

The second useful fact is the next lemma, which is a famous theorem in
probability theory:

Lemma 167 (Borell-Cantelli). Let A1, A2, . . . be a sequence of events. De-
note by A the event that infinitely many of these events occur.

(a) If
∑∞

n=1 P[An] <∞, then P[A] = 0 (i.e. with probability 1, only finitely
many of the events A1, A2, . . . occur).

(b) If
∑∞

n=1 P[An] = ∞ and the events A1, A2, . . . are independent, then
P[A] = 1. In particular, at least one of A1, A2, . . . occur with probability
1.

Proof of Theorem 166. Let U,W ⊆ N0 be finite, disjoint vertex-subsets of
G(p). Let r := maxU ∪W , and define events An to be

An := {(r + n) ∼ u, (r + n) 6∼ w for all u ∈ U,w ∈W}.

In other words, An describes the event that the vertex r + n is the vertex
required for property (P). For An to occur, we thus need |U |-many edges to
be in G(p) (each of them is present with probability p), and |W |-many edges
to not be in G(p) (which happens with probability 1− p each). We thus have

P[An] = p|U |(1− p)|W |

and therefore
∞∑
n=1

P[An] =
∞∑
n=1

p|U |(1− p)|W | =∞,

76

so by the Borel-Cantelli lemma, with probability 1 at least one of the events
An occurs.

For given U,W , denote by BU,W the event that there exists a vertex verify-
ing property (P) with probability 1. Since there are only countably many
configurations for U and W (as both are assumed to be finite), we obtain

P[G(p) satisfies (P)] = P

⋂
U,W

BU,W

 = 1

by the earlier comment on the intersection of countably many events with
probability 1.

77

Lecture 18 The Erdős-Rényi random graph

In this lecture, we look at the most classic of all random graph models, the
Erdős-Rényi random graph G(n, p): Consider a graph on n labelled vertices.
For each of the

(
n
2

)
potential edges, draw the edge with probability p and

don’t draw it with probability 1− p, independently of all other edges.2

The resulting graph will depend on parameters and on the randomness of
which edges to include, and will therefore have a probability distribution on
the set of all labelled graphs on n vertices. In fact, if G = (V,E) is a fixed
labelled graph on n vertices, then the probability that a G(n, p) coincides
with G is

p|E|(1− p)(n2)−|E|

because the edges are chosen independently of each other. In particular, for
p = 1

2 , we obtain a uniformly chosen random graph on n vertices. Some other
properties follow in a similar fashion: The number of edges in G(n, p) is a
binomially-distributed random variable with parameters

(
n
2

)
and p. Moreover,

it is relatively easy to obtain estimates such as the following

Lemma 168. P[α(G(n, p)) ≥ k] ≤
(
n
k

)
(1− p)(k2)

Proof. The probability that any fixed set of k vertices is independent is
(1 − p)(k2). There are

(
n
k

)
such sets, so we can number them from 1 to

(
n
k

)
.

Denote by Ai the event that the i-th set is an independent set. Then,

P[α(G(n, p)) ≥ k] = P
[⋃

i

Ai

]
≤
∑
i

P[Ai] =

(
n

k

)
(1− p)(k2),

as desired.

For fixed p and n→∞, the graph G(n, p) will “tend to” G(p) ∼= R (in some
sense). In order to obtain a richer model, however, we will from now on
assume that p = p(n), typically in such a way that p(n)→ 0 as n→∞. A
typical statement for the Erdős-Rényi random graphs will then be of the form:
“For a certain p(n), G(n, p) has property ... asymptotically almost surely or
with high probability (a.a.s. or w.h.p. for short)”. By this we mean that the
probability of G(n, p) having the desired property tends to 1 as n→∞. Here
are some examples:

Proposition 169. For fixed p ∈ (0, 1), we have diam(G(n, p)) = 2 a.a.s.
2Technically, the original paper by Erdős and Rényi from 1959 deals with the slightly

different model G(n,m) where among n labelled vertices, a random set of m edges is
chosen. The random graph G(n, p) was originally introduced by Gilbert also in 1959.

78

Proof. We first show that diam(G(n, p)) > 1 a.a.s. – to this end, note
that that the diameter of a graph is 1 iff the graph is complete. This
happens exactly with probability p(

n
2) → 0, hence it only suffices to show

diam(G(n, p)) ≤ 2.

We call a pair of vertices i, j bad if i and j are non-adjacent and do not
have a common neighbour. So, we have to show that the probability of there
being a bad pair in G(n, p) tends to zero. For any pair of vertices, define the
indicator random variable

Xij =

{
1 if i, j is bad
0 otherwise

.

Observe that E[Xij] = P[Xij = 1] = (1− p)(1− p2)n−2 in G(n, p), and note
that furthermore X :=

∑
1≤i<j≤nXij counts the number of bad pairs. Since

the expectation is linear, we obtain

E[X] =
∑

1≤i<j≤n
E[Xij] =

(
n

2

)
(1− p)(1− p2)n−2

and therefore E[X]→ 0 as n→∞. Moreover, X can only attain values in
N0, hence P[X > 0] ≤ E[X]→ 0.

What happened in the last line of the proof? We used the following lemma
from probability theory:

Lemma 170 (First-moment-method). If X is an integer-valued non-negative
random variable, then P[X > 0] ≤ E[X]. In particular, if E[X] = 0, then
also P[X > 0] = 0.

This lemma is a direct consequence of the Markov inequality from probability
theory, stating that a non-negative random variable X satisfies P[X ≥ a] ≤
a−1E[X] for any a > 0.

There is also a method involving the second moment of a random variable,
and it is named accordingly (this is a consequence of Chebyshev’s inequality):

Lemma 171 (Second-moment-method). If X is an integer-valued non-
negative random variable with finite expectation, then

P[X = 0] ≤ Var[X]

E[X]2
.

These lemmas are useful for a proof strategy called the probabilistic method.
The idea is as follows: Suppose you want to show the existence of an element
with a certain property in a set A. Then it is enough to show that if you
sample elements from A randomly (according to a distribution of your choice),

79

then you obtain an element with the desired property with positive probability.
Note that the property in question can be entirely deterministic (in the sense
that it is not relying on randomness) and we will see examples of this later.
For now, let’s returen to G(n, p).

Proposition 172. As n→∞, we have3

P[G(n, p) contains a K3]→
{

0 if p(n)� 1
n

1 if p(n)� 1
n

Proof. Let’s number the
(
n
3

)
potential triangles in G(n, p) from 1 to

(
n
3

)
in

some arbitrary order, and define the indicator random variable

Yi =

{
1 if triangle i is present
0 otherwise

Denote by X the number of triangles in G(n, p). In particular, X =
∑(n3)

i=1 Yi.

Since any three vertices could potentially span a triangle in G(n, p), each
with probability p3, we have

E[X] =

(n3)∑
i=1

E[Yi] =

(
n

3

)
p3 =

n(n− 1)(n− 2)

6
p3 ∼ n3p3

6
.

Therefore, for p(n)� 1
n we get E[X]� 1

6 , so E[X]→ 0 and hence P[X >
0]→ 0 by Lemma 170.

For the other claim, let’s calculate the variance of X, using the fact that
Y 2
i = Yi:

E[X2] = E
[(∑

i

Yi
)2]

=
∑
i

E[Y 2
i] +

∑
i,j

i 6=j

E[YiYj]

= E[X] +
∑
i,j

i 6=j

P[Both triangles i, j are present]

The triangles i and j in the last line could share 0,1, or 2 vertices, depending
on their position relative to each other:

• If they have no vertices in common, then E[YiYj] = p6, and this happens
in
(
n
3

)(
n−3

3

)
-many configurations.

• If they have one vertex in common, then E[YiYj] = p6, and this happens
in 3

(
n
3

)(
n−3

2

)
-many configurations.

3We write f � g if f(x)/g(x)→ 0 as x→∞, and analogously for f � g. We also use
f ∼ g to express f(x)/g(x)→ 1.

80

• If they have two vertices in common, then they share an edge as well,
so E[YiYj] = p5, and this happens in 3

(
n
3

)
(n− 3)-many configurations.

Therefore, continuing the calculation above:

E[X2] = E[X] +

(
n

3

)((
n− 3

3

)
p6 + 3

(
n− 3

2

)
p6 + 3(n− 3)p5

)
Finally, for the variance, we obtain

Var[X] = E[X2]−E[X]2

=

(
n

3

)
p3 +

(
n

3

)(
n− 3

3

)
p6 + 3

(
n

3

)(
n− 3

2

)
p6

+ 3(n− 3)

(
n

3

)
p5 −

(
n

3

)2

p6

≤
(
n

3

)
p3 + 3

(
n

3

)(
n− 3

2

)
p6 + 3(n− 3)

(
n

3

)
p5

∼ (np)3

6
+

(np)6

4n
+

(np)5

2n
.

Hence, the expression Var[X]/E[X]2 from the right-hand side of Lemma 171
is asymptotically less or equal to

(np)3

6 + (np)6

4n + (np)5

2n
(np)6

36

=
6

(np)3
+

9

n
+

18

n2p
.

Now, if np(n)→∞ then

P[X = 0] ≤ Var[X]

E[X]2
→ 0 for n→∞

using the second-moment-method.

Definition 173. Let (P) be some property. A function f(n) is called a
critical function of threshold for (P) if

P[G(n, p) satisfies (P)]→
{

0 if p(n)� f(n)

1 if p(n)� f(n)

Thus, Proposition 172 can be rephrased as “The critical function for the
occurance of triangles is 1/n”. As it can be shown, if (P) is a monotone
property, i.e. such that adding edges to a graph with (P) does not yield a
graph without (P), then (P) admits a critical function. Thus, properties
such as containing a fixed subgraph H, being connected, being non-planar,
or being Hamiltonian all have critical functions (more on that next lecture).

81

Remark 174. What happens for p = c
n for some c > 0? In this case, one needs

to refine the argument a bit: If the random variables Yi were independent,
we could write

P[X0] = P[Yi = 0 ∀i] =
∏
i

P[Yi = 0].

Sadly, they’re not independent because some triangles share edges, so the
second equality is wrong. Let ∆ =

∑
P[YiYj = 1], where the sum runs over

all i, j such that Yi and Yj are dependent. Then, using Janson’s inequality
for the upper estimate, one can obtain∏

i

P[Yi = 0] ≤ P[X = 0] ≤ e−E[X]+∆. (3)

Based on our earlier calculations, we have

∆ = 3(n− 3)

(
n

3

)
p5 ∼ c5

2n
→ 0 and E[X]→ c3

6
.

On the other hand, we have

∏
i

P[Yi = 0] = (1− p3)(
n
3) =

(
1− c3

n3

)(n3)
∼ e−c3/6.

Plugging both results into (3) yields

P[G(n, c/n) contains a K3]→ 1− e−c3/6.

In fact, one can show that in G(n, c/n), the number of triangles X is asymp-
totically a Poisson-distribution with parameter c3/6.

82

Lecture 19 More on random graphs

Last time, we have seen that monotone properties of graphs exhibit thresholds
f(n) for G(n, p), where the property is satisfied a.a.s. for p(n)� f(n), and
a.a.s. not satisfied for p(n)� f(n); and we could determine the threshold
function for the containment of triangles using the first- and second moment
methods, together with a bit of combinatorics.

By the same methods (though the computations are a little bit more tedious)
one can obtain the critical function for the containment of a K4:

P[G(n, p) ⊇ K4]→
{

0 if p(n)� n−2/3

1 if p(n)� n−2/3

For comparison, let now H denote the following graph and consider a proba-
bility slightly below the threshold for K4, say p(n) = n−7/10 � n−2/3:

In a labelled Kn, there are c(n,H) := 20
(
n
5

)
different copies of H – this is

because there are
(
n
5

)
-many ways to pick the 5 vertices, then there are 5

possibilities to select the vertex with degree 1 among the 5 vertices, and
4 possible choices for the vertex of degree 4. For all other vertices in H,
the choice among the remaining three vertices doesn’t matter. Enumerate
these copies from 1 to c(n,H). The probability of any individual copy of
H appearing in G(n, p) is p7, as H contains 7 edges. Denote by Yi, i =
1, . . . c(n,H) the indicator random variable for the event that the i-th copy of
H in Kn, and by X the number of copies of H in G(n, p). Then X =

∑
Yi,

and by linearity of expectation for our choice of p:

E[X] =

c(n,H)∑
i=1

E[Yi] =

c(n,H)∑
i=1

p7 = c(n,H)p7 ∼ 1

6
n5p7 =

1

6
n1/100 →∞.

Yet any copy of H contains a copy of K4, so

P[G(n, n−7/10) ⊇ H] ≤ P[G(n, n−7/10) ⊇ K4]→ 0

since n−7/10 is below the critical function for K4. So the expected number of
copies of H goes to infinity, yet the probability for there being even one H
tends to zero!

How to make sense of this? Note that P[G(n, n−7/10) ⊇ K4] > 0 for any
fixed n. But given a copy of K4 in G(n, p), there are 4(n−4) ways to connect

83

an extra edge to it to obtain a copy of H. Thus any copy of K4 is contained
in ≈ np = n3/10 different copies of H. So, as n increases, even though it
becomes more and more unlikely for G(n, p) to contain a K4, these fewer
copies of K4 give more and more copies of H, which explains the weird results
above. It can be shown that the threshold for containing H is actually at
n−2/3, and thereby coincides with the threshold for K4. Intuitively, this
means once again that if you have a high enough p to produce a K4, then
the probability is also large enough to guarantee the additional edge in H
(at least, as n→∞).

Let’s now consider an arbitrary finite simple graph G = (V,E) with vG = |V |
and eG = |E|. Denote by Aut(G) the set of isomorphisms G → G (such
isomorphisms are also called automorphisms, hence the notation). By the
same approach as above, one can prove the next lemma.

Lemma 175. With the notation just introduced, the following holds:

(i) There are exactly4 c(n,G) =
(
n
vG

)
vG!

|Aut(G)| copies of G in a labelled Kn.

(ii) If XG denotes the number of copies of G in G(n, p), then

E[XG] = c(n,G)peG ∼ 1

|Aut(G)|n
vGpeG →

{
0 if p� n−vG/eG

∞ if p� n−vG/eG

What about Var[XG]? Turns out, a similar approach as for triangles works
for general subgraphs as well!

Lemma 176. With notation as above, and assuming eG > 0, we have5

Var[XG] � (1− p) max
H⊆G,eH>0

E[XG]2

E[XH]
.

The following theorem gives thresholds for the containment of any finite
subgraph. To formulate the theorem, set

m(G) := max
H⊆G,vH>0

eH
vH

.

Theorem 177 (Bollobás, 1981). Let G be a finite simple graph with at least
one edge. Then

P[G(n, p) ⊇ G]→
{

0 if p� n−1/m(G)

1 if p� n−1/m(G)
.

4If you’re familiar with abstract algebra, then note that Aut(G) is a subgroup of the
symmetric group on vG elements, hence |Aut(G)| is a divisor of vG!.

5We write an � bn to express that there exist constants c, C > 0 such that cbn ≤ an ≤
Cbn for all sufficiently large n.

84

Proof. Assume p� n−1/m(G) and denote by H ′ a subgraph of G maximizing
eH′
vH′

, i.e. m(G) =
eH′
vH′

. Then

P[XG > 0] ≤ P[XH′ > 0] ≤ E[XH′]→ 0

by the first moment method and part (ii) in Lemma 175.

Conversely, if p� n−1/m(G) then p� n−vH/eH for all subgraphs H ⊆ G with
eH > 0. Consequently, we have E[XH] � nvHpeH →∞, again by Lemma 175.
Now, applying the second moment method and Lemma 176 yields

P [XG = 0] ≤ Var[XG]

E[XG]2
� 1− p

E[XG]2

(
max

H⊆G,eH>0

E[XG]2

E[XH]

)
= O

(
1

minH⊆G,eH>0 E[XH]

)
,

therefore P [XG = 0]→ 0.

The evolution of G(n, p). Let us now shift our viewpoint on G(n, p): If
we fix the number of vertices, but increase the probability, it will look as
if we would add randomly more edges into the graph. In fact, this can be
made rigorous by using a coupling : Consider a labelled Kn where every edge
e is equipped with an independent random variable Xe that is uniformly
distributed on [0, 1]. Then for any fixed p, the Erdős-Rényi random graph
G(n, p) has the same distribution as the random spanning subgraph of Kn

where we only keep edges with weight ≤ p. Using this coupling, we can thus
ensure a version of G(n, p) that is monotonous in p. The same is true if
we focus on the asymptotics of G(n, p(n)). Thus, for different asymptotic
behaviour of p(n) our G(n, p) showcases different behaviour:

• The function n−2 is the critical function for the existence of an edge,
and for fixed k the functions n−k/(k−1) is the threshold for the existence
of a tree on k vertices.

• Similarly to the result from last lecture, for p(n)� 1/n there are a.a.s.
no cycles in G(n, p), whereas for p(n)� 1/n they are asymptotically
guaranteed.

• For p(n) = c
n with 0 < c < 1, we observe many components that are

either trees or contain a single cycle. If Cmax denotes the number of
vertices in the largest component, then we have

Cmax

log n
→ 1

c− 1− log c

in probability.6

6A sequence Xn converges to a ∈ R in probability if P[|Xn − a| > ε] → 0 as n → ∞
pointwise for all ε > 0.

85

• For p(n) = 1
n , the largest component has grown to contain about n2/3

vertices.

• For p(n) = c
n with c > 1, there exists a constant ζc > 0 such that for

all ν ∈ (1/2, 1) there is a δ = δ(c, ν) > 0 such that

P[|Cmax − ζcn| ≥ nν] = O(n−δ).

In other words, the largest component contains a positive proportion of
vertices. Moreover, the largest component is unique, as the probability
is large enough to guarantee an edge between any two vertex sets of
positive proportion. This is also called the giant component. The
giant component contains enough edges to be non-planar. All other
components are trees on O(log(n)) vertices.

• For p(n) = log(n)+c
n where c > 0, all vertices are either isolated or in the

giant component. The number of isolated vertices is Poisson-distributed
with parameter e−c.

• For p(n) = c log(n)
n with c > 1, the graph G(n, p) is a.a.s connected and

Hamiltonian.

• The functions n−2/(k−1) are the critical functions for the appearance of
Kk.

Observe how in all these cases, the edge density of G(n, p) still tends to zero
(so, we say that those graphs are sparse networks, as opposed to the graphs
we considered in lectures 16 and 17, where the edge density was positive.
Many real-world networks tend to be sparse, and have rather specific degree
sequences, that differ from the degree sequences obtained from the Erdős-
Rényi random graph (where deg(v) is binomially distributed with parameters
n− 1 and p).

Let us conclude this course with an application of the probabilistic method
to prove a statement about deterministic graphs. Recall Erdős’ theorem
(Theorem 136) from Lecture 13:

For all positive integers k there exists a graph G with χ(G) > k and without
a cycle of length ≤ k.

The trick of the proof will be to look at random graphs, and show that both
of these properties together hold with positive probability.

Proof. Fix a k ≥ 3 and an ε ∈ (0, 1/k). Set p = p(n) = nε−1 and denote by
X the number of cycles of length at most k in G(n, p). Similarly to how we

86

found the expected value to the number of triangles in G(n, p) last lecture,
one can find the expected value for the number of cycles of length k to be

n!

(n− k)!

pk

2k
.

We therefore obtain

E[X] =
k∑
i=3

n!

(n− i)!
pi

2i
≤ 1

2

k∑
i=3

(np)i ≤ 1

2
(k − 2)nkpk,

because np = nε > 1, so (np)i ≤ (np)k. Hence

P
[
X ≥ n

2

]
≤ E[X]

n/2
≤ (k − 2)nk−1pk = (k − 2)nkε−1 → 0

for n→∞ by Markov’s inequality (which states P[X ≥ a] ≤ a−1E[X]).

We also claim that for any p with p(n) ≥ 16k2

n for all n large enough, the
independence number α satisfies

P
[
α(G(n, p)) ≥ n

2k

]
→ 0 as n→∞.

(The proof of this claim is an exercise for L20). In particular, this claim holds
for our choice of p(n) = nε−1.

By what we’ve shown so far, for all n large enough we have both

P
[
X <

n

2

]
>

1

2
and P

[
α(G(n, p)) <

n

2k

]
>

1

2
.

But this implies that both events cannot be disjoint; in particular, G(n, p)
contains neither more than n

2 cycles of length ≤ k nor an independent set
of size ≥ n

2k with some positive probability. So, consider a graph for which
both of these properties are true, and remove one vertex from each cycle of
length ≤ k, thus removing all these unwanted short cycles. The remaining
graph H is induced on at least n

2 vertices, hence

χ(H) ≥ |V (H)|
α(H)

≥ n/2

α(G)
≥ k,

which finishes the proof.

87

Some references

Most of this course followed

• Reinhard Diestel: Graph Theory. Graduate texts in mathematics 173.
Springer, 5th ed., 2017.

with material also coming from the following other textbooks or lecture notes:

• Norman Biggs: Algebraic Graph Theory. Cambridge University Press,
2nd ed., 1993.

• Béla Bollobás: Graph Theory. An Introductory Course. Graduate texts
in mathematics 63. Springer, 1979.

• Béla Bollobás: Modern Graph Theory. Graduate texts in mathematics
184. Springer, 1998.

• Lutz Volkmann: Graphen an allen Ecken und Kanten. Lecture notes
RWTH Aachen, 2006. (In German)

For lectures 16-19, concerning the regularity lemma, the Rado graph and the
results on random graphs, the following sources were additionally used:

• Noga Alon and Joel Spencer: The Probabilistic Method. Wiley, 3rd ed.,
2008.

• Peter J. Cameron: The random graph. arXiv:1301:7544

• Svante Janson, Tomasz Łuczak, Andrzej Ruciński: Random Graphs.
Wiley, 2000.

• János Komlós and Miklós Simonovits: Szemerédi’s regularity lemma
and its applications in graph theory. DIMACS Technical Report, 1996.

• László Lovász: Large Networks and Graph Limits. American Mathe-
matical Soc., 2012.

• Joel Spencer: The Strange Logic of Random Graphs. Algorithms and
Combinatorics 22. Springer, 2001.

• Remco van der Hofstadt: Random Graphs and Complex Networks, Vol.
I. Cambridge University Press, 2016.

• Remco van der Hofstadt: Random Graphs and Complex Networks,
Vol. II. www.win.tue.nl/~rhofstad/NotesRGCNII.pdf, November 16,
2020.

88

