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1 Introduction

In this project, we give a summary of the paper Making Life More Confusing for Firefighters
written by Samuel D. Hand, Jessica Enright, and Kitty Meeks, all from the University of Glas-
gow. [3] In the paper, they investigate whether the Firefighter problem (the F problem) on cer-
tain classes of temporal graphs is NP-complete or not.

To even understand the problem they address, we first introduce some of the core terminology.
In Section 2 follows a description of the main methods and ideas used in the paper’s proofs.
Finally, in Section 3, we present the results achieved by the authors.

The F problem is known to be NP-complete on arbitrary graphs, NP meaning that the answer
is either yes or no, and that it is possible to verify the solution within polynomial time, while
the completeness part means that every other NP, in polynomial time, can be reduced to the
problem.[1] Since there are no known generalised algorithms for NP-complete problems, the au-
thors are interested in for what classes of graphs or what conditions on lambda for temporal
graphs it is possible to find an algorithm solving the problem within a reasonable time; polyno-
mial time, that is tractable problems, and which classes of graphs have NP-complete problems.
Therefore, in chapters 3 and 4, they enforce restrictions on the graphs, and put constraints
on the lifespan of temporal graphs respectively, studying whether the problems now are NP-
complete or tractable.
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(a) At t = 0, the fire starts at vertex 4.
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(b) At t = 1, we choose to defend vertex
3. The fire then spreads to vertex 5.
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(c) At t = 2, we choose to defend vertex
7. The fire then spreads to vertex 6.
Now, the fire cannot spread anymore,
so the process terminates.

Figure 1: An example of a graph G going through the fire with a strategy of deploying two fire-
fighters, saving a total of 5 vertices.

1



A sequence of vertices v1, v2, ..., vn such that vi is a valid defence at t = i, i.e., vi is neither burn-
ing nor defended at t = i, is called a strategy. If we are given a rooted graph (G, r) and an in-
teger k, F asks whether there exists a strategy that saves at least k vertices from burning when
the fire starts at r. In Figure 1 above, our strategy is 3, 7, and we save 5 vertices. Hence, we
have solved F for the given rooted graph and k = 5.

A temporal graph is a pair (G, λ), where G is a graph and λ is a function on the set of edges of
G that assigns to each edge a set of timesteps at which it is active. That an edge e is active at
timestep i means that the fire can spread along e at that time. Similarly, when e is not active,
the fire cannot spread along it. For example, a normal graph is a temporal graph where λ(e) =
N for all edges e in G. An important concept related to temporal graphs is the lifetime, which
is the last timestep at which any edge is active.

The Temporal Firefighter Problem (TF) is very similar to F, with the sole difference that we let
the rooted graph (G, r) be a temporal rooted graph ((G, r), λ) instead.

The F problem is known to be NP-complete on arbitrary graphs, NP meaning that the answer
is either yes or no, and that it is possible to verify the solution within polynomial time, while
the completeness part means that every other NP, in polynomial time, can be reduced to the
problem.[1] Since there are no known generalised algorithms for NP-complete problems, the au-
thors are interested in for what classes of graphs or what conditions on lambda for temporal
graphs it is possible to find an algorithm solving the problem within a reasonable time; polyno-
mial time, that is tractable problems, and which classes of graphs have NP-complete problems.
Therefore, in chapters 3 and 4, they enforce restrictions on the graphs, and put constraints
on the lifespan of temporal graphs respectively, studying whether the problems now are NP-
complete or tractable.

2 Method

2.1 Restricting the Underlying Graph

This chapter’s main focus is on the difference between the Firefighter Problem (F) and the
Temporal Firefighter Problem (TF), and the complexity that arises with TF. That leads to
several classes of graphs that are solvable in Polynomial (P) time for the Firefighter Problem,
but NP-complete if it is instead ”put into” the Temporal Firefighter Problem, if the underly-
ing graph is a clique, where “underlying graph is a clique” means that the graph the problem
plays out on is a complete graph, however the edges does only need to be temporally active at
at least one timestep (see Figure 2).

However, in the paper, they prove the stronger statement: For any constant c ∈ N, TF is NP-
complete when restricted to temporal graphs whose underlying graph is a clique and whose life-
time is at most n

1
c , where n is the number of vertices in the graph.

They prove it by reducing a static graph (G, r) into ((G′, λ), r) with a set W containing the
number of vertices |V (G)|c − |V (G)| (where c is a positive integer) added and connected by
a ”static”/temporally active edge throughout the spreading of the fire, to r. Using the same
strategy S used for the F problem with ((G, r), k), leads to all those vertices in W burning up
at t = 1, and the rest of the vertices (2 through 5 in Figure 2) being able to save k vertices by
the same strategy S used in (G, r) which also saved k vertices. If you would instead save a ver-
tex in W (at t = 1 since no other time is possible), then at least one (or more vertices) would
burn from the original G, saving at the very most the same number of vertices, but probably
less, leading to strategy S saving more or at the very least the same number of vertices.
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(a) The static graph
((G, r), k), with root r
and have at least one
strategy that saves k
vertices.
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(b) The graph (((G′, λ), r), k),
with the vertex marked {W}
being a set W containing all
vertices |V (G)|c − |V (G)|
added (meaning that W con-
tains that amount of vertices),
and a strategy saving k ver-
tices iff there was a strategy
in ((G, r), k) that did so/was a
yes-instance.

λ(−) = {1, 2, ..., |V (G)| − 1}
λ(−−−) = {|V (G)| − 1}

Figure 2: An example of the transformation or reduction from static (G, r) to temporal
((G′, λ), r), with time-labelling function λ such that ((G′, λ), r) is a clique with edges between
all vertices while still acting as the original graph (G, r).

This means that if there is a strategy S that follows from F in graph ((G, r), k), then that same
strategy will also save k vertices in (((G′, λ), r), k) if we use the reduction seen in Figure 2.

That theorem leads to the corollary that several types/classes of graphs that are solvable in P
time in F, are instead NP-complete in TF: split graphs, unit interval graphs, cographs, Pk-free
graphs for k > 2 and AT-free graphs (the last one is of interest since it is the only one in the
list that has not been proven to be solvable in P time, but is shown to be NP-complete in TF).

However, there is a class of graphs that is solvable in P time for the F problem (see [2]), and
also solvable in P time for the TF problem: the class of graphs of maximum degree 3, with a
root of degree at most two (G3R2), an example of which can be seen in Figure 1.

To prove the statement that G3R2 is solvable in P time on a rooted temporal graph ((G, λ), r)
the paper uses the same structure as in [2], while modifying it for the temporal structure. For
G3R2 to be solvable in P time, we need to show that there is an optimal strategy, S, that al-
ways defends next to the fire (like in Figure 1) while at the same time creating the shortest pos-
sible path of fire.

The paper proves it by creating a function f(u) that checks the temporal distances (meaning
how many timesteps it takes between the two vertices, including the timesteps ”waiting” for
the edge to be temporally active) between the root r and vertex u (where u would be the last
vertex to burn), and then showing that S minimises the function f(u) by showing that when
the fire reaches u, there are only two possible cases, as of the degree restriction of G3R2 lead-
ing to only two other vertices being connected to u. Then, for the fire to stop at u, either the
two vertices are already defended (case 1), which would mean that we had time to defend those
two before the fire came to u (which means that f(u) is not optimal and that we could have
minimised it by defending next to the fire). For the second case, that one of the vertices had al-
ready been defended, and the other one would have been defended at the next timestep, means
that S is the optimal strategy and the G3R2 is solvable in P time for the TF problem.
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(a) A G3R2, with root r and a
cycle (which is allowed), at t = 0.
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(b) Defending vertex 2, since 2 ∼ 10
is the longest possible path, and r ∼ 3
is the shortest possible leaf, leading to
vertex 3 burning at t = 1
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(c) Defending vertex 6 since it 6 ∼ 12
is longer than 3 ∼ 5 (which is the
shortest possible leaf), stopping the
spread of the fire at t = 2.

Figure 3: The F problem on a G3R2-graph, using the optimal strategy.

We can see an example of this strategy S in action in figure 3, as we minimise the longest pos-
sible ”leaf” (and/or cycle), leading to us finding r ∼ 3 = P (P stands for the optimal Path)
and defending the vertices outside of P but that is directly next to the fire, ”leading” the fire to
vertex 5.

Note that while figure 3 is a Firefighter problem (since it is easier to draw and is basically the
same process), the TF-problem can only shorten the optimal path, and the strategy is equally
easy to calculate as f(u) now just checks the temporal length/distance between r and u and
finding the shortest one in a temporal space, instead of the shortest distance in a static graph.

2.2 Restricting the Temporal Structure

The next chapter studies a certain limit on the rooted temporal graph, and how it is related
to the time (computationally). To do this, they first (for some temporal graph (G, λ)) define
a kind of span for the lifetime of a vertex v, its lifespan starts at the first timestep where it is
incident to an active edge and ends at the last timestep where it is incident to an active edge.
From this is defined a sequence of sets, Ft, where Ft is a set of vertices and v is in Ft iff t is
part of v’s lifespan. They then define ω as the size of the largest of these sets. This is almost an
upper bound on the number of vertices relevant at any timestep, although it does not take into
account the possibility to do moves that will be beneficial in the future but not in the present.

Here we are introduced to the temporal firefighter reserve problem (TFR), which is the same
as TF but allows us at each turn to, instead of deploying a firefighter, save and deploy it at a
later timestep instead. Fixing a rooted TG ((G, λ), r), the strategies of TF are a subset of the
strategies of TFR. In addition, making a move earlier never hurts. This leads to a more con-
crete lemma, which says that on a rooted TG, being able to save at least k vertices in the TF
version is equivalent to being able to save at least k vertices in the TFR version. They hence-
forth use TFR to also be able to draw a conclusion about TF. A reason why we use TFR is
in order to only have to focus on at most ω vertices (and what has happened before) at each
timestep.

Most of the rest of the chapter is about designing a fixed parameter tractable (FPT)-algorithm
with the goal of determining if it is possible to save k vertices, taking a rooted temporal graph
as input. A FPT-algorithm is an algorithm that works in polynomial time if you fix some con-
stant, which here will be ω.[4] It works by recursively computing a sequence of time-dependant
sets Li, where each element in Li contains a tuple of information, namely: the set of defended
vertices in Fi (D), the set of burned vertices in Fi (B), the number of firefighters deployable
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at time i + 1 (g) and the total number of vertices burning at time i (c). The fact that this al-
gorithm works is encapsulated by a theorem. Its idea is to first set L0, whose only element is
(∅, {r}, 1, 1) since these are the initial values. They then construct the elements in Li by, for
each element in Li−1, and for some choice of new vertices to defend, checking if a tuple satisfies
4 conditions. These conditions are limits on the new sets of defended and burned vertices, the
new budget, and the new number of vertices burning that ensure that we get the situation we
would expect, with an element in Li as our previous step and having chosen vertices to defend.
This induction means that a snapshot of the graph is in some Li iff it is part of some strat-
egy. This gives the endpoint all possible strategies that could be optimal, where we know how
many vertices are saved by each strategy and can compare these to conclude if k vertices can be
saved.

This leads us to the final theorem, which states that it is possible to solve TF in time O(8ωωΛ3).
The main point of this is to say that for a fixed omega, the problem can be solved in polyno-
mial time. Since we only have to focus on at most ω nodes at any timestep, this is what limits
the exponential growth of the possible strategies.

3 Result

The paper has shown that Temporal Firefighter is NP-complete if its graph belongs to a class
of graphs for which Firefighter is also NP-complete. It has also been shown that Temporal Fire-
fighter is NP-complete for some graphs that are known to be solvable in polynomial time for
Firefighter. Graphs for which the maximum degree is three, and for which the root is of degree
two, are solvable in polynomial time for both Temporal Firefighter and Firefighter. The authors
then produce a FPT-algorithm that restricts the temporal structure, such that the Temporal
Firefighter becomes solvable in polynomial time. The authors also highlight areas that could ex-
tend their current works, such as figuring out the complexity of a Temporal Firefighter where
the number of active edges is maximum bounded for each timestep.
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